BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32680872)

  • 21. Maltose utilization in Enterococcus faecalis.
    Le Breton Y; Pichereau V; Sauvageot N; Auffray Y; Rincé A
    J Appl Microbiol; 2005; 98(4):806-13. PubMed ID: 15752325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Mannitol Metabolism in Enterococcus faecalis and Association with
    Anbalagan S; Sadlon J; Weaver K
    J Bacteriol; 2022 May; 204(5):e0004722. PubMed ID: 35404112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR.
    Schlösser A; Weber A; Schrempf H
    FEMS Microbiol Lett; 2001 Mar; 196(1):77-83. PubMed ID: 11257552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis.
    Andersson U; Rådström P
    BMC Microbiol; 2002 Sep; 2():28. PubMed ID: 12296976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes.
    van Wezel GP; White J; Young P; Postma PW; Bibb MJ
    Mol Microbiol; 1997 Feb; 23(3):537-49. PubMed ID: 9044287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr.
    Homburg C; Bommer M; Wuttge S; Hobe C; Beck S; Dobbek H; Deutscher J; Licht A; Schneider E
    Mol Microbiol; 2017 Jul; 105(1):25-45. PubMed ID: 28370477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the Streptococcus pneumoniae maltosaccharide regulator MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features.
    Puyet A; Ibáñez AM; Espinosa M
    J Biol Chem; 1993 Dec; 268(34):25402-8. PubMed ID: 8244973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response.
    Roux AE; Robert S; Bastat M; Rosinski-Chupin I; Rong V; Holbert S; Mereghetti L; Camiade E
    Microbiol Spectr; 2022 Dec; 10(6):e0208022. PubMed ID: 36264242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr.
    Jones BE; Dossonnet V; Küster E; Hillen W; Deutscher J; Klevit RE
    J Biol Chem; 1997 Oct; 272(42):26530-5. PubMed ID: 9334231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus.
    Egeter O; Brückner R
    Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Manzoor I; Kuipers OP
    PLoS One; 2015; 10(6):e0127579. PubMed ID: 26030923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Yoshii T; Hino T
    Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579.
    van der Voort M; Kuipers OP; Buist G; de Vos WM; Abee T
    BMC Microbiol; 2008 Apr; 8():62. PubMed ID: 18416820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments.
    Fleming E; Lazinski DW; Camilli A
    Mol Microbiol; 2015 Jul; 97(2):360-80. PubMed ID: 25898857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A LacI-family regulator activates maltodextrin metabolism of Enterococcus faecium.
    Zhang X; Rogers M; Bierschenk D; Bonten MJ; Willems RJ; van Schaik W
    PLoS One; 2013; 8(8):e72285. PubMed ID: 23951303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus.
    Egeter O; Brückner R
    J Bacteriol; 1995 May; 177(9):2408-15. PubMed ID: 7730272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
    Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH
    J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.