These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. Zandberg DP; Menk AV; Velez M; Normolle D; DePeaux K; Liu A; Ferris RL; Delgoffe GM J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 33986123 [TBL] [Abstract][Full Text] [Related]
4. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905 [TBL] [Abstract][Full Text] [Related]
5. PD-1 blockade combined with IL-33 enhances the antitumor immune response in a type-1 lymphocyte-mediated manner. He H; Shi L; Meng D; Zhou H; Ma J; Wu Y; Wu Y; Gu Y; Xie W; Zhang J; Zhu Y Cancer Treat Res Commun; 2021; 28():100379. PubMed ID: 33951555 [TBL] [Abstract][Full Text] [Related]
6. LAG3 (CD223) as a cancer immunotherapy target. Andrews LP; Marciscano AE; Drake CG; Vignali DA Immunol Rev; 2017 Mar; 276(1):80-96. PubMed ID: 28258692 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Leone RD; Sun IM; Oh MH; Sun IH; Wen J; Englert J; Powell JD Cancer Immunol Immunother; 2018 Aug; 67(8):1271-1284. PubMed ID: 29923026 [TBL] [Abstract][Full Text] [Related]
8. LAG3 and PD1 Regulate CD8+ T Cell in Diffuse Large B-cell Lymphoma Patients. Liu Y; Guo X; Zhan L; Wang L; Wang X; Jiang M Comput Math Methods Med; 2021; 2021():4468140. PubMed ID: 34422089 [TBL] [Abstract][Full Text] [Related]
9. Enhanced oral versus flank lymph node T cell response parallels anti-PD1 efficacy in head and neck cancer. Kono M; Saito S; Rokugo M; Egloff AM; Uppaluri R Oral Oncol; 2024 May; 152():106795. PubMed ID: 38599127 [TBL] [Abstract][Full Text] [Related]
10. Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Vathiotis IA; Johnson JM; Argiris A Cancer Treat Rev; 2021 Jun; 97():102192. PubMed ID: 33819755 [TBL] [Abstract][Full Text] [Related]
11. The Evolving Landscape of PD-1/PD-L1 Pathway in Head and Neck Cancer. Qiao XW; Jiang J; Pang X; Huang MC; Tang YJ; Liang XH; Tang YL Front Immunol; 2020; 11():1721. PubMed ID: 33072064 [TBL] [Abstract][Full Text] [Related]
12. Targeting Dendritic Cell Dysfunction to Circumvent Anti-PD1 Resistance in Head and Neck Cancer. Saito S; Kono M; Nguyen HCB; Egloff AM; Messier C; Lizotte P; Paweletz C; Adkins D; Uppaluri R Clin Cancer Res; 2024 May; 30(9):1934-1944. PubMed ID: 38372707 [TBL] [Abstract][Full Text] [Related]
13. Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice. Chiu DK; Yuen VW; Cheu JW; Wei LL; Ting V; Fehlings M; Sumatoh H; Nardin A; Newell EW; Ng IO; Yau TC; Wong CM; Wong CC Gastroenterology; 2020 Aug; 159(2):609-623. PubMed ID: 32275969 [TBL] [Abstract][Full Text] [Related]
14. PD-L1-Independent Mechanisms Control the Resistance of Melanoma to CD4 Goding SR; Wilson KA; Rosinsky C; Antony PA J Immunol; 2018 May; 200(9):3304-3311. PubMed ID: 29602773 [TBL] [Abstract][Full Text] [Related]
15. Modulation of lactate-lysosome axis in dendritic cells by clotrimazole potentiates antitumor immunity. Wang Z; Xu F; Hu J; Zhang H; Cui L; Lu W; He W; Wang X; Li M; Zhang H; Xiong W; Xie C; Liu Y; Zhou P; Liu J; Huang P; Qin XF; Xia X J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 34016722 [TBL] [Abstract][Full Text] [Related]
16. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Wang Z; Goto Y; Allevato MM; Wu VH; Saddawi-Konefka R; Gilardi M; Alvarado D; Yung BS; O'Farrell A; Molinolo AA; Duvvuri U; Grandis JR; Califano JA; Cohen EEW; Gutkind JS Nat Commun; 2021 Apr; 12(1):2383. PubMed ID: 33888713 [TBL] [Abstract][Full Text] [Related]
17. Inconsistent HIV reservoir dynamics and immune responses following anti-PD-1 therapy in cancer patients with HIV infection. Scully EP; Rutishauser RL; Simoneau CR; Delagrèverie H; Euler Z; Thanh C; Li JZ; Hartig H; Bakkour S; Busch M; Alter G; Marty FM; Wang CC; Deeks SG; Lorch J; Henrich TJ Ann Oncol; 2018 Oct; 29(10):2141-2142. PubMed ID: 30032204 [No Abstract] [Full Text] [Related]
18. Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo- and Immunotherapy. Puntigam LK; Jeske SS; Götz M; Greiner J; Laban S; Theodoraki MN; Doescher J; Weissinger SE; Brunner C; Hoffmann TK; Schuler PJ Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707816 [TBL] [Abstract][Full Text] [Related]
19. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J Front Immunol; 2020; 11():563258. PubMed ID: 33488573 [TBL] [Abstract][Full Text] [Related]