These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
585 related articles for article (PubMed ID: 32681214)
1. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Essa E; Aldesouky D; Hussein SE; Rashad MZ Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214 [TBL] [Abstract][Full Text] [Related]
2. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096 [TBL] [Abstract][Full Text] [Related]
3. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
4. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
5. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
7. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Aslani S; Dayan M; Storelli L; Filippi M; Murino V; Rocca MA; Sona D Neuroimage; 2019 Aug; 196():1-15. PubMed ID: 30953833 [TBL] [Abstract][Full Text] [Related]
8. Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images. Sadeghibakhi M; Pourreza H; Mahyar H IEEE J Transl Eng Health Med; 2022; 10():1800411. PubMed ID: 35711337 [No Abstract] [Full Text] [Related]
9. One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Valverde S; Salem M; Cabezas M; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Salvi J; Oliver A; Lladó X Neuroimage Clin; 2019; 21():101638. PubMed ID: 30555005 [TBL] [Abstract][Full Text] [Related]
10. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images. Sarica B; Seker DZ; Bayram B Int J Med Inform; 2023 Feb; 170():104965. PubMed ID: 36580821 [TBL] [Abstract][Full Text] [Related]
11. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527 [TBL] [Abstract][Full Text] [Related]
12. Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis. Brugnara G; Isensee F; Neuberger U; Bonekamp D; Petersen J; Diem R; Wildemann B; Heiland S; Wick W; Bendszus M; Maier-Hein K; Kickingereder P Eur Radiol; 2020 Apr; 30(4):2356-2364. PubMed ID: 31900702 [TBL] [Abstract][Full Text] [Related]
13. Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks. Krüger J; Ostwaldt AC; Spies L; Geisler B; Schlaefer A; Kitzler HH; Schippling S; Opfer R Eur Radiol; 2022 Apr; 32(4):2798-2809. PubMed ID: 34643779 [TBL] [Abstract][Full Text] [Related]
14. Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Nair T; Precup D; Arnold DL; Arbel T Med Image Anal; 2020 Jan; 59():101557. PubMed ID: 31677438 [TBL] [Abstract][Full Text] [Related]
15. Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study. Amini A; Shayganfar A; Amini Z; Ostovar L; HajiAhmadi S; Chitsaz N; Rabbani M; Kafieh R Mult Scler Relat Disord; 2024 Jul; 87():105642. PubMed ID: 38703520 [TBL] [Abstract][Full Text] [Related]
16. RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. Barquero G; La Rosa F; Kebiri H; Lu PJ; Rahmanzadeh R; Weigel M; Fartaria MJ; Kober T; Théaudin M; Du Pasquier R; Sati P; Reich DS; Absinta M; Granziera C; Maggi P; Bach Cuadra M Neuroimage Clin; 2020; 28():102412. PubMed ID: 32961401 [TBL] [Abstract][Full Text] [Related]
17. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596 [TBL] [Abstract][Full Text] [Related]
18. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826 [TBL] [Abstract][Full Text] [Related]
19. An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images. Bal A; Banerjee M; Chaki R; Sharma P Med Biol Eng Comput; 2021 Aug; 59(7-8):1495-1527. PubMed ID: 34184181 [TBL] [Abstract][Full Text] [Related]
20. Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach. Salem M; Ryan MA; Oliver A; Hussain KF; Lladó X Front Neurosci; 2022; 16():1007619. PubMed ID: 36507318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]