These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32681230)

  • 1. Macaque monkeys show reversed ocular following responses to two-frame-motion stimulus presented with inter-stimulus intervals.
    Takemura A; Matsumoto J; Hashimoto R; Kawano K; Miura K
    J Comput Neurosci; 2021 Aug; 49(3):273-282. PubMed ID: 32681230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal impulse response function of the visual system estimated from ocular following responses in humans.
    Ohnishi Y; Kawano K; Miura K
    Neurosci Res; 2016 Dec; 113():56-62. PubMed ID: 27527266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
    Sheliga BM; Chen KJ; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Mar; 46(6-7):979-92. PubMed ID: 16242168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The visual motion detectors underlying ocular following responses in monkeys.
    Miura K; Matsuura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Vision Res; 2006 Mar; 46(6-7):869-78. PubMed ID: 16356529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in perceptual and oculomotor responses revealed by apparent motion stimuli presented with an interstimulus interval.
    Nohara S; Kawano K; Miura K
    J Neurophysiol; 2015 May; 113(9):3219-28. PubMed ID: 25810485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye movements in response to dichoptic motion: evidence for a parallel-hierarchical structure of visual motion processing in primates.
    Hayashi R; Miura K; Tabata H; Kawano K
    J Neurophysiol; 2008 May; 99(5):2329-46. PubMed ID: 18272870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-frame apparent motion presented with an inter-stimulus interval reverses optokinetic responses in mice.
    Miura K; Sugita Y; Furukawa T; Kawano K
    Sci Rep; 2018 Dec; 8(1):17816. PubMed ID: 30546049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of color signals to ocular following responses.
    Matsuura K; Kawano K; Inaba N; Miura K
    Eur J Neurosci; 2016 Oct; 44(8):2600-2613. PubMed ID: 27519159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ISI produces reverse apparent motion.
    Shioiri S; Cavanagh P
    Vision Res; 1990; 30(5):757-68. PubMed ID: 2378068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal ON and OFF pathways contribute to initial optokinetic responses with different temporal characteristics.
    Sugita Y; Miura K; Furukawa T
    Eur J Neurosci; 2020 Aug; 52(4):3160-3165. PubMed ID: 32027443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion-reversal reveals two motion mechanisms functioning in scotopic vision.
    Takeuchi T; De Valois KK
    Vision Res; 1997 Mar; 37(6):745-55. PubMed ID: 9156219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-latency ocular following responses to motion stimuli are strongly affected by temporal modulations of the visual content during the initial fixation period.
    Sheliga BM; Quaia C; FitzGibbon EJ; Cumming BG
    J Vis; 2021 May; 21(5):8. PubMed ID: 33970195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions.
    Sheliga BM; Fitzgibbon EJ; Miles FA
    Vision Res; 2008 Aug; 48(17):1758-76. PubMed ID: 18603279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychophysical properties of two-stroke apparent motion.
    Mather G; Challinor KL
    J Vis; 2009 Jan; 9(1):28.1-6. PubMed ID: 19271898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal visual processing constrains human ocular following response.
    Sheliga BM; Quaia C; FitzGibbon EJ; Cumming BG
    Vision Res; 2013 Dec; 93():29-42. PubMed ID: 24125703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses.
    Kawano K; Shidara M; Yamane S
    J Neurophysiol; 1992 Mar; 67(3):680-703. PubMed ID: 1578251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.
    Sheliga BM; Kodaka Y; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Jun; 46(13):2041-60. PubMed ID: 16487988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How motion signals are integrated across frequencies: study on motion perception and ocular following responses using multiple-slit stimuli.
    Hayashi R; Sugita Y; Nishida S; Kawano K
    J Neurophysiol; 2010 Jan; 103(1):230-43. PubMed ID: 19906887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular following responses of monkeys to the competing motions of two sinusoidal gratings.
    Matsuura K; Miura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Neurosci Res; 2008 May; 61(1):56-69. PubMed ID: 18316135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input.
    Miles FA; Kawano K; Optican LM
    J Neurophysiol; 1986 Nov; 56(5):1321-54. PubMed ID: 3794772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.