BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32681236)

  • 1. Four-dimensional virtual reality cine cardiac models using free open-source software.
    Priya S; Nagpal P
    Pediatr Radiol; 2020 Oct; 50(11):1617-1623. PubMed ID: 32681236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality.
    González Izard S; Sánchez Torres R; Alonso Plaza Ó; Juanes Méndez JA; García-Peñalvo FJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality and augmented reality applications and simulation in vascular access management with three-dimensional visualization.
    Yokoyama I; Sarai T; Asai T; Kitou N; Nozaki H; Kondo Y; Nomura Y; Morizane A; Sekikawa M; Liu D
    J Vasc Access; 2019 May; 20(1_suppl):65-70. PubMed ID: 31032726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HEARTBEAT4D: An Open-source Toolbox for Turning 4D Cardiac CT into VR/AR.
    Bindschadler M; Buddhe S; Ferguson MR; Jones T; Friedman SD; Otto RK
    J Digit Imaging; 2022 Dec; 35(6):1759-1767. PubMed ID: 35614275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaglyph stereo virtual dissection: a novel inexpensive method for stereoscopic visualisation of intracardiac anatomy on CT angiogram.
    Gupta SK; Gupta P
    Cardiol Young; 2021 Dec; 31(12):1958-1961. PubMed ID: 33851903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Virtual Reality Environment to Visualize Three-Dimensional Patient-Specific Models by a Mobile Head-Mounted Display.
    Vertemati M; Cassin S; Rizzetto F; Vanzulli A; Elli M; Sampogna G; Gallieni M
    Surg Innov; 2019 Jun; 26(3):359-370. PubMed ID: 30632462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Role for Virtual Reality in Planning Endovascular Procedures.
    Mohammed MAA; Khalaf MH; Kesselman A; Wang DS; Kothary N
    J Vasc Interv Radiol; 2018 Jul; 29(7):971-974. PubMed ID: 29935787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choledochoscopic Examination of a 3-Dimensional Printing Model Using Augmented Reality Techniques: A Preliminary Proof of Concept Study.
    Tang R; Ma L; Li A; Yu L; Rong Z; Zhang X; Xiang C; Liao H; Dong J
    Surg Innov; 2018 Oct; 25(5):492-498. PubMed ID: 29909727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of open-source software segmentation and paper-based printed three-dimensional models.
    Szymor P; Kozakiewicz M; Olszewski R
    J Craniomaxillofac Surg; 2016 Feb; 44(2):202-9. PubMed ID: 26748414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
    Shinbane JS; Saxon LA
    J Cardiovasc Comput Tomogr; 2018; 12(1):16-27. PubMed ID: 29198733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-reality view of cardiac specimens: a new approach to understanding complex intracardiac congenital lesions.
    Kang SL; Shkumat N; Dragulescu A; Guerra V; Padfield N; Krutikov K; Chiasson DA; Chaturvedi RR; Yoo SJ; Benson LN
    Pediatr Radiol; 2020 Oct; 50(11):1610-1616. PubMed ID: 32613358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Virtual and Augmented Reality in Biomedical Imaging.
    González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ
    J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality.
    Ghosh RM; Jolley MA; Mascio CE; Chen JM; Fuller S; Rome JJ; Silvestro E; Whitehead KK
    3D Print Med; 2022 Apr; 8(1):11. PubMed ID: 35445896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.
    Oshiro Y; Ohkohchi N
    Tissue Eng Part A; 2017 Jun; 23(11-12):474-480. PubMed ID: 28343411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new virtual reality approach for planning of cardiac interventions.
    Sørensen TS; Therkildsen SV; Makowski P; Knudsen JL; Pedersen EM
    Artif Intell Med; 2001 Jun; 22(3):193-214. PubMed ID: 11377147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Ultrasound Virtual Reality in the Diagnosis and Treatment of Cardiovascular Diseases.
    Fan M; Yang X; Ding T; Cao Y; Si Q; Bai J; Lin Y; Zhao X
    J Healthc Eng; 2021; 2021():9999654. PubMed ID: 34457227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online tools to easily build virtual molecular models for display in augmented and virtual reality on the web.
    Cortés Rodríguez F; Dal Peraro M; Abriata LA
    J Mol Graph Model; 2022 Jul; 114():108164. PubMed ID: 35325844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast-track virtual reality for cardiac imaging in congenital heart disease.
    Raimondi F; Vida V; Godard C; Bertelli F; Reffo E; Boddaert N; El Beheiry M; Masson JB
    J Card Surg; 2021 Jul; 36(7):2598-2602. PubMed ID: 33760302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of Temporal Bone Anatomy for Patient-Specific Virtual Reality Simulation.
    Andersen SAW; Bergman M; Keith JP; Powell KA; Hittle B; Malhotra P; Wiet GJ
    Ann Otol Rhinol Laryngol; 2021 Jul; 130(7):724-730. PubMed ID: 33143454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.