BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32681429)

  • 21. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways.
    Vis AN; Schröder FH
    BJU Int; 2009 Aug; 104(4):438-48. PubMed ID: 19558559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of human vitamin D(3) 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells.
    Ellfolk M; Norlin M; Gyllensten K; Wikvall K
    Mol Pharmacol; 2009 Jun; 75(6):1392-9. PubMed ID: 19286836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochrome P450 2B6 is a growth-inhibitory and prognostic factor for prostate cancer.
    Kumagai J; Fujimura T; Takahashi S; Urano T; Ogushi T; Horie-Inoue K; Ouchi Y; Kitamura T; Muramatsu M; Blumberg B; Inoue S
    Prostate; 2007 Jul; 67(10):1029-37. PubMed ID: 17455229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer.
    Wang P; Qin X; Liu M; Wang X
    Pharmacol Res; 2018 Jul; 133():9-20. PubMed ID: 29719203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo steroid biosynthesis in human prostate cell lines and biopsies.
    Sakai M; Martinez-Arguelles DB; Aprikian AG; Magliocco AM; Papadopoulos V
    Prostate; 2016 May; 76(6):575-87. PubMed ID: 26841972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-associated expression of vitamin D receptor and vitamin D-metabolizing enzymes in the male reproductive tract and sperm of Hu sheep.
    Yao X; Ei-Samahy MA; Yang H; Feng X; Li F; Meng F; Nie H; Wang F
    Anim Reprod Sci; 2018 Mar; 190():27-38. PubMed ID: 29336863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered decidual and placental catabolism of vitamin D may contribute to the aetiology of spontaneous miscarriage.
    Hou H; Zhang JY; Chen D; Deng F; Morse AN; Qiu X; He P; Lash GE
    Placenta; 2020 Mar; 92():1-8. PubMed ID: 32056782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motor neuron-like NSC-34 cells as a new model for the study of vitamin D metabolism in the brain.
    Almokhtar M; Wikvall K; Ubhayasekera SJKA; Bergquist J; Norlin M
    J Steroid Biochem Mol Biol; 2016 Apr; 158():178-188. PubMed ID: 26704532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Canonical and Noncanonical Androgen Metabolism and Activity.
    Storbeck KH; Mostaghel EA
    Adv Exp Med Biol; 2019; 1210():239-277. PubMed ID: 31900912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Vitamin D and prostate cancer].
    Marusić G; Jeremić D; Vojinov S; Filipović N; Popov M
    Med Pregl; 2013; 66(5-6):259-62. PubMed ID: 23888737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of CYP17A1 in prostate cancer development: structure, function, mechanism of action, genetic variations and its inhibition.
    Kmeťová Sivoňová M; Jurečeková J; Tatarková Z; Kaplán P; Lichardusová L; Hatok J
    Gen Physiol Biophys; 2017 Dec; 36(5):487-499. PubMed ID: 29372682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis.
    Sen A; Stark H
    World J Gastroenterol; 2019 Jun; 25(23):2846-2862. PubMed ID: 31249444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of Vitamin D3 metabolism in prostate cancer.
    Lou YR; Qiao S; Talonpoika R; Syvälä H; Tuohimaa P
    J Steroid Biochem Mol Biol; 2004 Nov; 92(4):317-25. PubMed ID: 15663995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin D hydroxylases CYP2R1, CYP27B1 and CYP24A1 in renal cell carcinoma.
    Urbschat A; Paulus P; von Quernheim QF; Brück P; Badenhoop K; Zeuzem S; Ramos-Lopez E
    Eur J Clin Invest; 2013 Dec; 43(12):1282-90. PubMed ID: 24245571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat.
    Tissandie E; Guéguen Y; Lobaccaro JM; Paquet F; Aigueperse J; Souidi M
    Arch Toxicol; 2006 Aug; 80(8):473-80. PubMed ID: 16502312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypoxia as a modulator of cytochromes P450: Overexpression of the cytochromes CYP2S1 and CYP24A1 in human liver cancer cells in hypoxia.
    Cabrera-Cano A; Dávila-Borja VM; Juárez-Méndez S; Marcial-Quino J; Gómez-Manzo S; Castillo-Rodríguez RA
    Cell Biochem Funct; 2021 Jun; 39(4):478-487. PubMed ID: 33377261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P450-dependent enzymes as targets for prostate cancer therapy.
    De Coster R; Wouters W; Bruynseels J
    J Steroid Biochem Mol Biol; 1996 Jan; 56(1-6 Spec No):133-43. PubMed ID: 8603034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Prostate Androgens by Megalin and 25-hydroxyvitamin D Status: Mechanism for High Prostate Androgens in African American Men.
    Garcia J; Krieger KD; Loitz C; Perez LM; Richards ZA; Helou Y; Kregel S; Celada S; Mesaros CA; Bosland M; Gann PH; Willnow TE; Vander Griend D; Kittles R; Prins GS; Penning T; Nonn L
    Cancer Res Commun; 2023 Mar; 3(3):371-382. PubMed ID: 36875158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CYP3A4 polymorphisms--potential risk factors for breast and prostate cancer: a HuGE review.
    Keshava C; McCanlies EC; Weston A
    Am J Epidemiol; 2004 Nov; 160(9):825-41. PubMed ID: 15496535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for steroidogenic potential in human prostate cell lines and tissues.
    Bennett NC; Hooper JD; Lambie D; Lee CS; Yang T; Vesey DA; Samaratunga H; Johnson DW; Gobe GC
    Am J Pathol; 2012 Sep; 181(3):1078-87. PubMed ID: 22796438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.