BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32681504)

  • 1. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic evaluation of 2'-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro.
    Chen S; Le BT; Chakravarthy M; Kosbar TR; Veedu RN
    Sci Rep; 2019 Apr; 9(1):6078. PubMed ID: 30988454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro.
    Shimo T; Tachibana K; Saito K; Yoshida T; Tomita E; Waki R; Yamamoto T; Doi T; Inoue T; Kawakami J; Obika S
    Nucleic Acids Res; 2014 Jul; 42(12):8174-87. PubMed ID: 24935206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges of Assessing Exon 53 Skipping of the Human
    Engelbeen S; O'Reilly D; Van De Vijver D; Verhaart I; van Putten M; Hariharan V; Hassler M; Khvorova A; Damha MJ; Aartsma-Rus A
    Nucleic Acid Ther; 2023 Dec; 33(6):348-360. PubMed ID: 38010230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and In Vitro Evaluation of Splice-Switching Oligonucleotides Bearing Locked Nucleic Acids, Amido-Bridged Nucleic Acids, and Guanidine-Bridged Nucleic Acids.
    Shimo T; Nakatsuji Y; Tachibana K; Obika S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric RNA/ethylene-bridged nucleic acids promote dystrophin expression in myocytes of duchenne muscular dystrophy by inducing skipping of the nonsense mutation-encoding exon.
    Surono A; Van Khanh T; Takeshima Y; Wada H; Yagi M; Takagi M; Koizumi M; Matsuo M
    Hum Gene Ther; 2004 Aug; 15(8):749-57. PubMed ID: 15319032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides.
    Tone Y; Mamchaoui K; Tsoumpra MK; Hashimoto Y; Terada R; Maruyama R; Gait MJ; Arzumanov AA; McClorey G; Imamura M; Takeda S; Yokota T; Wood MJA; Mouly V; Aoki Y
    Nucleic Acid Ther; 2021 Apr; 31(2):172-181. PubMed ID: 33567244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():165-171. PubMed ID: 30171541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and application of bispecific splice-switching oligonucleotides.
    Bestas B; McClorey G; Tedebark U; Moreno PM; Roberts TC; Hammond SM; Smith CI; Wood MJ; Andaloussi SE
    Nucleic Acid Ther; 2014 Feb; 24(1):13-24. PubMed ID: 24506779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells.
    Aartsma-Rus A; Kaman WE; Bremmer-Bout M; Janson AA; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Gene Ther; 2004 Sep; 11(18):1391-8. PubMed ID: 15229633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy.
    Takeshima Y; Yagi M; Wada H; Ishibashi K; Nishiyama A; Kakumoto M; Sakaeda T; Saura R; Okumura K; Matsuo M
    Pediatr Res; 2006 May; 59(5):690-4. PubMed ID: 16627883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study.
    Kinali M; Arechavala-Gomeza V; Feng L; Cirak S; Hunt D; Adkin C; Guglieri M; Ashton E; Abbs S; Nihoyannopoulos P; Garralda ME; Rutherford M; McCulley C; Popplewell L; Graham IR; Dickson G; Wood MJ; Wells DJ; Wilton SD; Kole R; Straub V; Bushby K; Sewry C; Morgan JE; Muntoni F
    Lancet Neurol; 2009 Oct; 8(10):918-28. PubMed ID: 19713152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exon skipping therapy for Duchenne muscular dystrophy.
    Kole R; Krieg AM
    Adv Drug Deliv Rev; 2015 Jun; 87():104-7. PubMed ID: 25980936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.