BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32681505)

  • 1. Targeting Polyadenylation for Retention of RNA at Chromatin.
    Ntini E; Vang Ørom UA
    Methods Mol Biol; 2020; 2161():51-58. PubMed ID: 32681505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense-Mediated Transcript Knockdown Triggers Premature Transcription Termination.
    Lee JS; Mendell JT
    Mol Cell; 2020 Mar; 77(5):1044-1054.e3. PubMed ID: 31924448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination.
    Lai F; Damle SS; Ling KK; Rigo F
    Mol Cell; 2020 Mar; 77(5):1032-1043.e4. PubMed ID: 31924447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription termination downstream of the Saccharomyces cerevisiae FBP1 [changed from FPB1] poly(A) site does not depend on efficient 3'end processing.
    Aranda A; Pérez-Ortín JE; Moore C; del Olmo ML
    RNA; 1998 Mar; 4(3):303-18. PubMed ID: 9510332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3' end RNA polyadenylation.
    Lian Z; Karpikov A; Lian J; Mahajan MC; Hartman S; Gerstein M; Snyder M; Weissman SM
    Genome Res; 2008 Aug; 18(8):1224-37. PubMed ID: 18487515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts.
    Sousa-Luís R; Dujardin G; Zukher I; Kimura H; Weldon C; Carmo-Fonseca M; Proudfoot NJ; Nojima T
    Mol Cell; 2021 May; 81(9):1935-1950.e6. PubMed ID: 33735606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
    Kamieniarz-Gdula K; Gdula MR; Panser K; Nojima T; Monks J; Wiśniewski JR; Riepsaame J; Brockdorff N; Pauli A; Proudfoot NJ
    Mol Cell; 2019 Apr; 74(1):158-172.e9. PubMed ID: 30819644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system.
    Yonaha M; Proudfoot NJ
    Mol Cell; 1999 May; 3(5):593-600. PubMed ID: 10360175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to stop: the mysterious links among RNA polymerase II occupancy 3' of genes, mRNA 3' processing and termination.
    Anamika K; Gyenis À; Tora L
    Transcription; 2013; 4(1):7-12. PubMed ID: 23131668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II.
    Steinmetz EJ; Ng SB; Cloute JP; Brow DA
    Mol Cell Biol; 2006 Apr; 26(7):2688-96. PubMed ID: 16537912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene,
    Whalen C; Tuohy C; Tallo T; Kaufman JW; Moore C; Kuehner JN
    G3 (Bethesda); 2018 May; 8(6):2043-2058. PubMed ID: 29686108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription.
    McCracken S; Fong N; Yankulov K; Ballantyne S; Pan G; Greenblatt J; Patterson SD; Wickens M; Bentley DL
    Nature; 1997 Jan; 385(6614):357-61. PubMed ID: 9002523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular specialization of multifaceted 3'end modifying nucleotidyltransferases.
    Minasaki R; Eckmann CR
    Curr Opin Cell Biol; 2012 Jun; 24(3):314-22. PubMed ID: 22551970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNA 3'end processing: A tale of the tail reaches the clinic.
    Hollerer I; Grund K; Hentze MW; Kulozik AE
    EMBO Mol Med; 2014 Jan; 6(1):16-26. PubMed ID: 24408965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage and polyadenylation: Ending the message expands gene regulation.
    Neve J; Patel R; Wang Z; Louey A; Furger AM
    RNA Biol; 2017 Jul; 14(7):865-890. PubMed ID: 28453393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription and splicing dynamics during early
    Prudêncio P; Savisaar R; Rebelo K; Martinho RG; Carmo-Fonseca M
    RNA; 2022 Feb; 28(2):139-161. PubMed ID: 34667107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An end in sight? Xrn2 and transcriptional termination by RNA polymerase II.
    Eaton JD; West S
    Transcription; 2018; 9(5):321-326. PubMed ID: 30035655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination.
    Dichtl B; Blank D; Ohnacker M; Friedlein A; Roeder D; Langen H; Keller W
    Mol Cell; 2002 Nov; 10(5):1139-50. PubMed ID: 12453421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity.
    Eaton JD; Davidson L; Bauer DLV; Natsume T; Kanemaki MT; West S
    Genes Dev; 2018 Jan; 32(2):127-139. PubMed ID: 29432121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1.
    Pearson EL; Graber JH; Lee SD; Naggert KS; Moore CL
    Cell Rep; 2019 Feb; 26(7):1919-1933.e5. PubMed ID: 30759400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.