BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 32681684)

  • 1. Reconstructing marine plankton food web interactions using DNA metabarcoding.
    Zamora-Terol S; Novotny A; Winder M
    Mol Ecol; 2020 Sep; 29(17):3380-3395. PubMed ID: 32681684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species.
    Novotny A; Zamora-Terol S; Winder M
    Proc Biol Sci; 2021 Jun; 288(1953):20210908. PubMed ID: 34130506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet and trophic interactions of a circumglobally significant gelatinous marine zooplankter, Dolioletta gegenbauri (Uljanin, 1884).
    Walters TL; Lamboley LM; López-Figueroa NB; Rodríguez-Santiago ÁE; Gibson DM; Frischer ME
    Mol Ecol; 2019 Jan; 28(2):176-189. PubMed ID: 30403421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-locus DNA metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator.
    Carroll EL; Gallego R; Sewell MA; Zeldis J; Ranjard L; Ross HA; Tooman LK; O'Rorke R; Newcomb RD; Constantine R
    Sci Rep; 2019 Jan; 9(1):281. PubMed ID: 30670720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabarcoding analysis of trophic sources and linkages in the plankton community of the Kuroshio and neighboring waters.
    Kobari T; Tokumo Y; Sato I; Kume G; Hirai J
    Sci Rep; 2021 Dec; 11(1):23265. PubMed ID: 34853330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the secret diets of siphonophores (Cnidaria: Hydrozoa) using DNA metabarcoding.
    Damian-Serrano A; Hetherington ED; Choy CA; Haddock SHD; Lapides A; Dunn CW
    PLoS One; 2022; 17(5):e0267761. PubMed ID: 35594271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using DNA Metabarcoding to Characterize the Prey Spectrum of Two Co-Occurring
    Dischereit A; Wangensteen OS; Præbel K; Auel H; Havermans C
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model.
    Novotny A; Serandour B; Kortsch S; Gauzens B; Jan KMG; Winder M
    Sci Adv; 2023 Apr; 9(17):eadg1096. PubMed ID: 37126549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into planktonic food-web dynamics through the lens of size and season.
    Giraldo C; Cresson P; MacKenzie K; Fontaine V; Loots C; Delegrange A; Lefebvre S
    Sci Rep; 2024 Jan; 14(1):1684. PubMed ID: 38243111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomagnification of Methylmercury in a Marine Plankton Ecosystem.
    Wu P; Zakem EJ; Dutkiewicz S; Zhang Y
    Environ Sci Technol; 2020 May; 54(9):5446-5455. PubMed ID: 32054263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunistic vs selective feeding strategies of zooplankton under changing environmental conditions.
    Serandour B; Jan KMG; Novotny A; Winder M
    J Plankton Res; 2023; 45(2):389-403. PubMed ID: 37012975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From puffins to plankton: a DNA-based analysis of a seabird food chain in the northern Gulf of Maine.
    Bowser AK; Diamond AW; Addison JA
    PLoS One; 2013; 8(12):e83152. PubMed ID: 24358258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving taxonomic classification of marine zooplankton by molecular approach: registration of taxonomically verified 18S and 28S rRNA gene sequences.
    Watanabe T; Hirai J; Sildever S; Tadokoro K; Hidaka K; Tanita I; Nishiuchi K; Iguchi N; Kasai H; Nishi N; Katakura S; Taniuchi Y; Kodama T; Tashiro S; Nakae M; Okazaki Y; Kitajima S; Sogawa S; Hasegawa T; Azumaya T; Hiroe Y; Ambe D; Setou T; Ito D; Kusaka A; Okunishi T; Tanaka T; Kuwata A; Hasegawa D; Kakehi S; Shimizu Y; Nagai S
    PeerJ; 2023; 11():e15427. PubMed ID: 37334134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid trophic markers in the pelagic marine environment.
    Dalsgaard J; St John M; Kattner G; Müller-Navarra D; Hagen W
    Adv Mar Biol; 2003; 46():225-340. PubMed ID: 14601414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica.
    Garrison JA; Motwani NH; Broman E; Nascimento FJA
    PLoS One; 2022; 17(11):e0278070. PubMed ID: 36417463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Underpins the Trophic Networks of the Plankton in Shallow Oxbow Lakes?
    Kosiba J; Wilk-Woźniak E; Krztoń W; Strzesak M; Pociecha A; Walusiak E; Pudaś K; Szarek-Gwiazda E
    Microb Ecol; 2017 Jan; 73(1):17-28. PubMed ID: 27544677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction between cyanobacteria and zooplankton in a more eutrophic world.
    Ger KA; Urrutia-Cordero P; Frost PC; Hansson LA; Sarnelle O; Wilson AE; Lürling M
    Harmful Algae; 2016 Apr; 54():128-144. PubMed ID: 28073472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predator complementarity dampens variability of phytoplankton biomass in a diversity-stability trophic cascade.
    Rakowski CJ; Farrior CE; Manning SR; Leibold MA
    Ecology; 2021 Dec; 102(12):e03534. PubMed ID: 34496044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities.
    Ray JL; Althammer J; Skaar KS; Simonelli P; Larsen A; Stoecker D; Sazhin A; Ijaz UZ; Quince C; Nejstgaard JC; Frischer M; Pohnert G; Troedsson C
    Mol Ecol; 2016 Nov; 25(21):5585-5602. PubMed ID: 27662431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy.
    Novotny A; Jan KMG; Dierking J; Winder M
    Sci Rep; 2022 Jun; 12(1):10952. PubMed ID: 35768563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.