These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32681738)

  • 1. Quantum Yield for the Aqueous Photochemical Degradation of Chlorantraniliprole and Simulation of Its Environmental Fate in a Model California Rice Field.
    Redman ZC; Anastasio C; Tjeerdema RS
    Environ Toxicol Chem; 2020 Oct; 39(10):1929-1935. PubMed ID: 32681738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Simulated California Rice-Growing Conditions on Chlorantraniliprole Partitioning.
    Redman ZC; Tjeerdema RS
    J Agric Food Chem; 2018 Feb; 66(8):1765-1772. PubMed ID: 29437391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Flooding, Salinization, and Soil Properties on Degradation of Chlorantraniliprole in California Rice Field Soils.
    Redman ZC; Parikh SJ; Hengel MJ; Tjeerdema RS
    J Agric Food Chem; 2019 Jul; 67(29):8130-8137. PubMed ID: 31287295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodegradation of clothianidin under simulated California rice field conditions.
    Mulligan RA; Redman ZC; Keener MR; Ball DB; Tjeerdema RS
    Pest Manag Sci; 2016 Jul; 72(7):1322-7. PubMed ID: 26374572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pH and Divalent Metals Relevant to California Rice Fields on the Hydroxide-Mediated Hydrolysis of the Insecticide Chlorantraniliprole.
    Redman ZC; Tran KH; Parikh SJ; Tjeerdema RS
    J Agric Food Chem; 2019 Nov; 67(45):12402-12407. PubMed ID: 31663732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil and glass surface photodegradation of etofenprox under simulated california rice growing conditions.
    Vasquez M; Cahill T; Tjeerdema R
    J Agric Food Chem; 2011 Jul; 59(14):7874-81. PubMed ID: 21675771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Photolysis of Benzobicyclon Hydrolysate.
    Williams KL; Kaur R; McFall AS; Kalbfleisch J; Gladfelder JJ; Ball DB; Anastasio C; Tjeerdema RS
    J Agric Food Chem; 2018 Jun; 66(22):5462-5472. PubMed ID: 29754487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of climate change variables (standing water and rainfall) on dissipation of chlorantraniliprole from a simulated rice ecosystem.
    Pandey N; Rana D; Chandrakar G; Gowda GB; Patil NB; Pandi G GP; Annamalai M; Pokhare SS; Rath PC; Adak T
    Ecotoxicol Environ Saf; 2020 Dec; 205():111324. PubMed ID: 32971453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.
    Lavtižar V; van Gestel CA; Dolenc D; Trebše P
    Chemosphere; 2014 Jan; 95():408-14. PubMed ID: 24125717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental fate of rice pesticides in California.
    Mabury SA; Cox JS; Crosby DG
    Rev Environ Contam Toxicol; 1996; 147():71-117. PubMed ID: 8776986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolysis of chlorantraniliprole and cyantraniliprole in water and soil: verification of degradation pathways via kinetics modeling.
    Sharma AK; Zimmerman WT; Singles SK; Malekani K; Swain S; Ryan D; Mcquorcodale G; Wardrope L
    J Agric Food Chem; 2014 Jul; 62(28):6577-84. PubMed ID: 24971760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of chlorantraniliprole pesticide use in rice-crab coculture systems in the basin of the lower reaches of the Yangtze River in China.
    Song C; Zhang J; Hu G; Meng S; Fan L; Zheng Y; Chen J; Zhang X
    Chemosphere; 2019 Sep; 230():440-448. PubMed ID: 31121508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.
    Kurwadkar S; Evans A; DeWinne D; White P; Mitchell F
    Environ Toxicol Chem; 2016 Jul; 35(7):1718-26. PubMed ID: 26660507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight.
    Weber J; Halsall CJ; Wargent JJ; Paul ND
    J Environ Monit; 2009 Mar; 11(3):654-9. PubMed ID: 19280044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.
    Weidauer C; Davis C; Raeke J; Seiwert B; Reemtsma T
    Chemosphere; 2016 Jul; 154():416-424. PubMed ID: 27081795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical behaviour of musk tibetene. A chemical and kinetic investigation.
    Canterino M; Marotta R; Temussi F; Zarrelli A
    Environ Sci Pollut Res Int; 2008 May; 15(3):182-7. PubMed ID: 18504835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of photodegradation in the environmental fate of hydroxychloroquine.
    Dabić D; Babić S; Škorić I
    Chemosphere; 2019 Sep; 230():268-277. PubMed ID: 31108437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and kinetics of carfentrazone-ethyl herbicide in California, USA, flooded rice fields.
    Ngim KK; Crosby DG
    Environ Toxicol Chem; 2001 Mar; 20(3):485-90. PubMed ID: 11349847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental fate of trifluralin.
    Grover R; Wolt JD; Cessna AJ; Schiefer HB
    Rev Environ Contam Toxicol; 1997; 153():1-64. PubMed ID: 9380893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.