These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 32682087)

  • 41. Optimization of primary sewage sludge and coal lignite by microwave-assisted pyrolysis for the production of bio-oil.
    Xaba SA; Igberase E; Osayi J; Seodigeng T; Osifo PO
    Environ Technol; 2022 Feb; 43(5):658-672. PubMed ID: 32677866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor.
    Wu Q; Wang Y; Jiang L; Yang Q; Ke L; Peng Y; Yang S; Dai L; Liu Y; Ruan R
    Bioresour Technol; 2020 Mar; 299():122611. PubMed ID: 31874451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalytic co-pyrolysis of oil sludge and biomass over ZSM-5 for production of aromatic platform chemicals.
    Hou J; Zhong D; Liu W
    Chemosphere; 2022 Mar; 291(Pt 3):132912. PubMed ID: 34785179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst.
    Wang C; Lei H; Zhao Y; Qian M; Kong X; Mateo W; Zou R; Ruan R
    Bioresour Technol; 2021 Jan; 320(Pt A):124352. PubMed ID: 33166882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of oxygen vacancy defect on microwave pyrolysis of biomass to produce high-quality syngas and bio-oil: Microwave absorption and in-situ catalytic.
    Lin J; Sun S; Luo J; Cui C; Ma R; Fang L; Liu X
    Waste Manag; 2021 Jun; 128():200-210. PubMed ID: 34000690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application.
    Pariyar P; Kumari K; Jain MK; Jadhao PS
    Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature.
    Chen W; Chen Y; Yang H; Li K; Chen X; Chen H
    Bioresour Technol; 2018 Feb; 249():247-253. PubMed ID: 29049983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.
    Mohamed BA; Kim CS; Ellis N; Bi X
    Bioresour Technol; 2016 Feb; 201():121-32. PubMed ID: 26642217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals.
    Gbouri I; Yu F; Wang X; Wang J; Cui X; Hu Y; Yan B; Chen G
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.
    Ma R; Huang X; Zhou Y; Fang L; Sun S; Zhang P; Zhang X; Zhao X
    Bioresour Technol; 2017 Aug; 238():616-623. PubMed ID: 28486194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A review on pyrolysis of protein-rich biomass: Nitrogen transformation.
    Leng L; Yang L; Chen J; Leng S; Li H; Li H; Yuan X; Zhou W; Huang H
    Bioresour Technol; 2020 Nov; 315():123801. PubMed ID: 32673983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide.
    Su Y; Liu L; Zhang S; Xu D; Du H; Cheng Y; Wang Z; Xiong Y
    Bioresour Technol; 2020 Jan; 295():122243. PubMed ID: 31622918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.
    Solak A; Rutkowski P
    Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production.
    Zhao Y; Wang Y; Duan D; Ruan R; Fan L; Zhou Y; Dai L; Lv J; Liu Y
    Bioresour Technol; 2018 Feb; 249():69-75. PubMed ID: 29040862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combining impregnation and co-pyrolysis to reduce the environmental risk of biochar derived from sewage sludge.
    Min X; Ge T; Li H; Shi Y; Fang T; Sheng B; Li H; Dong X
    Chemosphere; 2022 Mar; 290():133371. PubMed ID: 34952014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.
    Qian Y; Zhang J; Wang J
    Bioresour Technol; 2014 Dec; 174():95-102. PubMed ID: 25463787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.