These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 32682087)

  • 61. Catalytic co-pyrolysis of herb residue and polypropylene for pyrolysis products upgrading and diversification using nickel-X/biochar and ZSM-5 (X = iron, cobalt, copper).
    Luo W; Wang T; Zhang S; Zhang D; Dong H; Song M; Zhou Z
    Bioresour Technol; 2022 Apr; 349():126845. PubMed ID: 35158035
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts.
    Kumar R; Strezov V; Lovell E; Kan T; Weldekidan H; He J; Dastjerdi B; Scott J
    Bioresour Technol; 2019 May; 279():404-409. PubMed ID: 30712994
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge.
    Yang YQ; Cui MH; Ren YG; Guo JC; Zheng ZY; Liu H
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):489-496. PubMed ID: 32047949
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.
    Zhao S; Zhou X; Wang C; Jia H
    Environ Technol; 2018 Nov; 39(21):2715-2723. PubMed ID: 28791935
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of biological pre-digestion of sewage sludge processed by fast pyrolysis on bio-oil yield and biochar toxicity.
    Merdun H; Boubacar Laougé Z; Sezgin İV; Çığgın AS
    Waste Manag; 2023 Feb; 157():149-158. PubMed ID: 36543058
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microwave catalytic co-pyrolysis of Chlorella vulgaris and high density polyethylene over activated carbon supported monometallic: Characteristics and bio-oil analysis.
    Chen C; Fan D; Ling H; Huang X; Yang G; Cai D; Zhao J; Bi Y
    Bioresour Technol; 2022 Nov; 363():127881. PubMed ID: 36067896
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer.
    Oh SY; Sohn JI
    Waste Manag Res; 2022 Nov; 40(11):1637-1644. PubMed ID: 35642625
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties.
    Bao D; Li Z; Liu X; Wan C; Zhang R; Lee DJ
    J Environ Manage; 2020 Aug; 268():110734. PubMed ID: 32510454
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite.
    Vendra Singh S; Chaturvedi S; Dhyani VC; Kasivelu G
    Bioresour Technol; 2020 Oct; 314():123674. PubMed ID: 32593785
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using sewage sludge with high ash content for biochar production and Cu(II) sorption.
    Fan J; Li Y; Yu H; Li Y; Yuan Q; Xiao H; Li F; Pan B
    Sci Total Environ; 2020 Apr; 713():136663. PubMed ID: 31958735
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Urea impregnation into fungus pretreated corn stover to perform pyrolysis for production of nitrogen-containing bio-oil and nitrogen-doped biochar.
    Sun Z; Liu S; Xu Y; Lu J; Shi H; Li S; Luo C; Dong Q
    Bioresour Technol; 2023 May; 376():128921. PubMed ID: 36934905
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.
    Rajamohan S; Kasimani R
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microwave-assisted catalytic fast pyrolysis of rice husk over a hierarchical HZSM-5/MCM-41 catalyst prepared by organic base alkaline solutions.
    Li Z; Zhong Z; Zhang B; Wang W; Zhao H; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2021 Jan; 750():141215. PubMed ID: 32862000
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge.
    Wang X; Chi Q; Liu X; Wang Y
    Chemosphere; 2019 Feb; 216():698-706. PubMed ID: 30391891
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective.
    Su G; Ong HC; Gan YY; Chen WH; Chong CT; Ok YS
    Bioresour Technol; 2022 Jan; 344(Pt B):126096. PubMed ID: 34626763
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over hollow HZSM-5 with mesoporous shell.
    Chaihad N; Anniwaer A; Choirun Az Zahra A; Kasai Y; Reubroycharoen P; Kusakabe K; Abudula A; Guan G
    Bioresour Technol; 2021 Dec; 341():125874. PubMed ID: 34523567
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of co-pyrolysis of rice husk and sewage sludge on the bioavailability and environmental risks of Pb and Cd.
    Yang YQ; Cui MH; Guo JC; Du JJ; Zheng ZY; Liu H
    Environ Technol; 2021 Jun; 42(15):2304-2312. PubMed ID: 31810427
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Utilization of fly ash-derived HZSM-5: catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor.
    Vichaphund S; Sricharoenchaikul V; Atong D
    Environ Technol; 2017 Jul; 38(13-14):1660-1672. PubMed ID: 27748642
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals.
    Fan Z; Zhou X; Peng Z; Wan S; Gao ZF; Deng S; Tong L; Han W; Chen X
    Chemosphere; 2023 Mar; 317():137929. PubMed ID: 36682641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.