These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 32682090)

  • 21. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol.
    Kong L; Wang Z; Shi Z; Hu X; Liu A; Tao W; Wang B; Wang Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4258-4268. PubMed ID: 35969348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes.
    Jang Y; Hou CH; Kwon K; Kang JS; Chung E
    Chemosphere; 2023 Mar; 317():137865. PubMed ID: 36642144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.
    Ku H; Jung Y; Jo M; Park S; Kim S; Yang D; Rhee K; An EM; Sohn J; Kwon K
    J Hazard Mater; 2016 Aug; 313():138-46. PubMed ID: 27060219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent.
    He X; Wen Y; Wang X; Cui Y; Li L; Ma H
    Waste Manag; 2023 Feb; 157():8-16. PubMed ID: 36512926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A feasible process for recycling valuable metals from LiNi
    Liu DY; Sun SN; Li DY
    Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of valuable metals from LiNi
    Zhuang L; Sun C; Zhou T; Li H; Dai A
    Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition.
    Cheng J; Zheng C; Xu K; Zhu Y; Song Y; Jing C
    J Hazard Mater; 2024 Mar; 465():133157. PubMed ID: 38064943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.