These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. Duché O; Elsen S; Cournac L; Colbeau A FEBS J; 2005 Aug; 272(15):3899-908. PubMed ID: 16045760 [TBL] [Abstract][Full Text] [Related]
7. [Hydrogenase activity of Rhodopseudomonas capsulata growing on organic media]. Tsygankov AA; Iakunin AF; Gogotov IN Mikrobiologiia; 1982; 51(4):533-7. PubMed ID: 6755194 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Siemann S; Schneider K; Oley M; Müller A Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075 [TBL] [Abstract][Full Text] [Related]
9. Regulation of nitrogenase A and R concentrations in Rhodopseudomonas capsulata by glutamine synthetase. Yoch DC Biochem J; 1980 Apr; 187(1):273-6. PubMed ID: 6105870 [TBL] [Abstract][Full Text] [Related]
10. Effect of oxygen on acetylene reduction by photosynthetic bacteria. Hochman A; Burris RH J Bacteriol; 1981 Aug; 147(2):492-9. PubMed ID: 6790517 [TBL] [Abstract][Full Text] [Related]
11. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Zumft WG; Castillo F Arch Microbiol; 1978 Apr; 117(1):53-60. PubMed ID: 678011 [TBL] [Abstract][Full Text] [Related]
12. Functional expression of nitrogenase-like protochlorophyllide reductase from Rhodobacter capsulatus in Escherichia coli. Yamamoto H; Nomata J; Fuita Y Photochem Photobiol Sci; 2008 Oct; 7(10):1238-42. PubMed ID: 18846289 [TBL] [Abstract][Full Text] [Related]
13. [Properties of two forms of ferredoxin from Rhodopseudomonas capsulata]. Iakunin AF; Gogotov IN Biokhimiia; 1983 May; 48(5):811-7. PubMed ID: 6575832 [TBL] [Abstract][Full Text] [Related]
14. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata. Jouanneau Y; Kelley BC; Berlier Y; Lespinat PA; Vignais PM J Bacteriol; 1980 Aug; 143(2):628-36. PubMed ID: 7009556 [TBL] [Abstract][Full Text] [Related]
15. Role of glutamine as a direct co-repressor of glutamine synthetase in Rhodobacter capsulatus E1F1. Romero F; Quintero A; Roldán JM FEMS Microbiol Lett; 1989 Mar; 49(1):111-3. PubMed ID: 2566555 [TBL] [Abstract][Full Text] [Related]
16. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. Hillmer P; Gest H J Bacteriol; 1977 Feb; 129(2):732-9. PubMed ID: 838686 [TBL] [Abstract][Full Text] [Related]
17. Ammonia-induced formation of an AmtB-GlnK complex is not sufficient for nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. Tremblay PL; Hallenbeck PC J Bacteriol; 2008 Mar; 190(5):1588-94. PubMed ID: 18156251 [TBL] [Abstract][Full Text] [Related]
18. Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: existence of two independent regulatory effects of ammonium. Pierrard J; Ludden PW; Roberts GP J Bacteriol; 1993 Mar; 175(5):1358-66. PubMed ID: 8444798 [TBL] [Abstract][Full Text] [Related]
19. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. Meyer J; Kelley BC; Vignais PM J Bacteriol; 1978 Oct; 136(1):201-8. PubMed ID: 711666 [TBL] [Abstract][Full Text] [Related]