These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 32683013)
1. Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Hamad MTMH Chemosphere; 2020 Dec; 260():127551. PubMed ID: 32683013 [TBL] [Abstract][Full Text] [Related]
2. Internalisation of Alufasi R; Parawira W; Stefanakis AI; Lebea P; Chakauya E; Chingwaru W Environ Technol; 2022 Mar; 43(7):949-961. PubMed ID: 32795219 [No Abstract] [Full Text] [Related]
3. Wetland treatment (HSSP) of wastewater from a milk-processing unit using Bambusa vulgaris, Typha latifolia and Cyperus rotundus. Tandon S; Inarkar M; Kumar R J Environ Sci Eng; 2010 Jan; 52(1):23-6. PubMed ID: 21114102 [TBL] [Abstract][Full Text] [Related]
4. Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrates. Shingare RP; Nanekar SV; Thawale PR; Karthik R; Juwarkar AA Int J Phytoremediation; 2017 Oct; 19(10):899-908. PubMed ID: 28318301 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944 [TBL] [Abstract][Full Text] [Related]
6. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. Mustapha HI; van Bruggen JJA; Lens PNL Int J Phytoremediation; 2018 Jan; 20(1):44-53. PubMed ID: 28598201 [TBL] [Abstract][Full Text] [Related]
7. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Rana V; Maiti SK Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705 [TBL] [Abstract][Full Text] [Related]
8. Resistance evaluation of Tejeda A; Valencia-Botín AJ; Zurita F Int J Phytoremediation; 2023; 25(10):1259-1268. PubMed ID: 36382673 [TBL] [Abstract][Full Text] [Related]
9. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan. Batool A Environ Sci Pollut Res Int; 2019 Oct; 26(30):31508-31521. PubMed ID: 31478177 [TBL] [Abstract][Full Text] [Related]
10. Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan. Akinbile CO; Yusoff MS; Ahmad Zuki AZ Waste Manag; 2012 Jul; 32(7):1387-93. PubMed ID: 22456086 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting the performance of horizontal flow constructed treatment wetland vegetated with Cyperus papyrus for municipal wastewater treatment. Abou-Elela SI; Elekhnawy MA; Khalil MT; Hellal MS Int J Phytoremediation; 2017 Nov; 19(11):1023-1028. PubMed ID: 28436685 [TBL] [Abstract][Full Text] [Related]
12. Microbial removal and plant uptake of nitrogen in constructed wetlands: mesocosm tests on influencing factors. Tao W Environ Sci Pollut Res Int; 2018 Dec; 25(36):36425-36437. PubMed ID: 30368712 [TBL] [Abstract][Full Text] [Related]
13. Performance of vertical flow constructed wetland for the treatment of effluent from a brassware industry in city of Fez, Morocco: a laboratory scale study. Zoufri I; Merzouki M; Ammari M; El-Byari Y; Chedadi M; Bari A; Jawhari FZ Int J Phytoremediation; 2024; 26(10):1564-1576. PubMed ID: 38591171 [TBL] [Abstract][Full Text] [Related]
14. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045 [TBL] [Abstract][Full Text] [Related]
15. Comparing the efficiency of Cyperus alternifolius and Phragmites australis in municipal wastewater treatment by subsurface constructed wetland. Shahi DH; Eslami H; Ehrampoosh MH; Ebrahimi A; Ghaneian MT; Ayatollah S; Mozayan MR Pak J Biol Sci; 2013 Apr; 16(8):379-84. PubMed ID: 24494519 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Malyan SK; Yadav S; Sonkar V; Goyal VC; Singh O; Singh R Water Environ Res; 2021 Oct; 93(10):1882-1909. PubMed ID: 34129692 [TBL] [Abstract][Full Text] [Related]
17. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia. Alquwaizany AS; Hussain G; Al-Zarah AI Environ Sci Pollut Res Int; 2022 Jun; 29(26):39838-39846. PubMed ID: 35112245 [TBL] [Abstract][Full Text] [Related]
18. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Calheiros CS; Rangel AO; Castro PM Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277 [TBL] [Abstract][Full Text] [Related]
19. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). Ayaz T; Khan S; Khan AZ; Lei M; Alam M J Environ Manage; 2020 Feb; 255():109833. PubMed ID: 31747629 [TBL] [Abstract][Full Text] [Related]
20. A novel horizontal subsurface flow constructed wetland planted with Typha angustifolia for treatment of polluted water. Gaballah MS; Abdelwahab O; Barakat KM; Aboagye D Environ Sci Pollut Res Int; 2020 Aug; 27(22):28449-28462. PubMed ID: 32418087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]