These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32683120)
1. Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger. Du Y; Wang X; Nie G; Xu L; Hu Y J Colloid Interface Sci; 2020 Nov; 580():234-244. PubMed ID: 32683120 [TBL] [Abstract][Full Text] [Related]
2. Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal. Zhao X; Zhang Y; Pan S; Zhang X; Zhang W; Pan B Chemosphere; 2021 Jan; 263():127938. PubMed ID: 32829222 [TBL] [Abstract][Full Text] [Related]
3. Enhanced fluoride removal using Mg-Zr binary metal oxide nanoparticles confined in a strong-base anion exchanger. He C; Sun Y; Gu Y; Ji H Chemosphere; 2024 Jun; 358():141980. PubMed ID: 38670508 [TBL] [Abstract][Full Text] [Related]
4. Preferable phosphate sequestration using polymer-supported Mg/Al layered double hydroxide nanosheets. Nie G; Wu L; Qiu S; Xu Z; Wang H J Colloid Interface Sci; 2022 May; 614():583-592. PubMed ID: 35121517 [TBL] [Abstract][Full Text] [Related]
5. [Performance of Polymer-based Titanium and Zirconium Oxides Composite Adsorbent for Simultaneous Removal of Phosphorus and Fluorine from Water]. Chen JK; Nie GZ; Liu ZY; Yao Y; Xu YH Huan Jing Ke Xue; 2017 May; 38(5):1947-1956. PubMed ID: 29965100 [TBL] [Abstract][Full Text] [Related]
6. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Pan B; Xu J; Wu B; Li Z; Liu X Environ Sci Technol; 2013 Aug; 47(16):9347-54. PubMed ID: 23909842 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384 [TBL] [Abstract][Full Text] [Related]
8. Selective and efficient sequestration of phosphate from waters using reusable nano-Zr(IV) oxide impregnated agricultural residue anion exchanger. Hu Y; Du Y; Nie G; Zhu T; Ding Z; Wang H; Zhang L; Xu Y Sci Total Environ; 2020 Jan; 700():134999. PubMed ID: 31739272 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. Zhang Y; Pan B; Shan C; Gao X Environ Sci Technol; 2016 Feb; 50(3):1447-54. PubMed ID: 26730837 [TBL] [Abstract][Full Text] [Related]
10. Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Liu F; Shan C; Zhang X; Zhang Y; Zhang W; Pan B J Hazard Mater; 2017 Jan; 321():290-298. PubMed ID: 27637095 [TBL] [Abstract][Full Text] [Related]
11. Highly selective adsorption of vanadium (V) by nano-hydrous zirconium oxide-modified anion exchange resin. Li M; Zhang B; Zou S; Liu Q; Yang M J Hazard Mater; 2020 Feb; 384():121386. PubMed ID: 31635822 [TBL] [Abstract][Full Text] [Related]
12. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Chen L; Zhao X; Pan B; Zhang W; Hua M; Lv L; Zhang W J Hazard Mater; 2015 Mar; 284():35-42. PubMed ID: 25463215 [TBL] [Abstract][Full Text] [Related]
13. High phosphate removal using La(OH) Zhang S; Zhang Y; Ding J; Zhang Z; Gao C; Halimi M; Demey H; Yang Z; Yang W J Environ Sci (China); 2021 Aug; 106():105-115. PubMed ID: 34210426 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery. Qiu H; Liang C; Zhang X; Chen M; Zhao Y; Tao T; Xu Z; Liu G ACS Appl Mater Interfaces; 2015 Sep; 7(37):20835-44. PubMed ID: 26340586 [TBL] [Abstract][Full Text] [Related]
15. Adsorption and recovery of phosphate using sodium carbonate as co-precipitant synthesized La&Zr dual-metal modified material: Adsorption mechanism and practical application. Hu Y; Li Y; Du Y; Zhao B; Chen M; Tian X; Chen S; Fan M; Zhang H Chemosphere; 2024 Sep; 363():142878. PubMed ID: 39032732 [TBL] [Abstract][Full Text] [Related]
16. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711 [TBL] [Abstract][Full Text] [Related]
17. Nanoconfined Hydrated Zirconium Oxide for Selective Removal of Cu(II)-Carboxyl Complexes from High-Salinity Water via Ternary Complex Formation. Zhang X; Huang P; Zhu S; Hua M; Pan B Environ Sci Technol; 2019 May; 53(9):5319-5327. PubMed ID: 30946783 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient P uptake by Fe Liu C; Wang Y; Li X; Li J; Dong S; Hao H; Tong Y; Zhou Y J Environ Sci (China); 2022 Oct; 120():18-29. PubMed ID: 35623769 [TBL] [Abstract][Full Text] [Related]
19. Bowknot-like Zr/La bimetallic organic frameworks for enhanced arsenate and phosphate removal: Combined experimental and DFT studies. Kong L; Zhang J; Wang Y; Yan Q; Xu J; Quan X; Andrews CB; Zhang Z; Zheng C J Colloid Interface Sci; 2022 May; 614():47-57. PubMed ID: 35078084 [TBL] [Abstract][Full Text] [Related]
20. Nanoconfinement boosts affinity of hydrated zirconium oxides to arsenate: Surface complexation modeling study. Shen P; Pan S; Huang X; Zhang X Chemosphere; 2024 Feb; 349():140912. PubMed ID: 38065259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]