These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32683162)
1. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio. Gitelson A J Plant Physiol; 2020 Sep; 252():153227. PubMed ID: 32683162 [TBL] [Abstract][Full Text] [Related]
2. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. Fassnacht FE; Stenzel S; Gitelson AA J Plant Physiol; 2015 Mar; 176():210-7. PubMed ID: 25512167 [TBL] [Abstract][Full Text] [Related]
3. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Gitelson AA; Zur Y; Chivkunova OB; Merzlyak MN Photochem Photobiol; 2002 Mar; 75(3):272-81. PubMed ID: 11950093 [TBL] [Abstract][Full Text] [Related]
4. [Leaf photosynthetic pigment seasonal dynamic of Quercus aliena var. acuteserrata and its spectral reflectance response under throughfall elimination]. Liu C; Sun PS; Liu SR; Lu HB; Chen ZC; Liu XJ Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1077-1086. PubMed ID: 29741302 [TBL] [Abstract][Full Text] [Related]
5. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field]. Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385 [TBL] [Abstract][Full Text] [Related]
6. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging. Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617 [TBL] [Abstract][Full Text] [Related]
7. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Gitelson AA; Gritz Y; Merzlyak MN J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084 [TBL] [Abstract][Full Text] [Related]
8. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice]. Wang FM; Huang JF; Wang XZ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1064-8. PubMed ID: 19626904 [TBL] [Abstract][Full Text] [Related]
9. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Maccioni A; Agati G; Mazzinghi P J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Hallik L; Niinemets U; Kull O Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867 [TBL] [Abstract][Full Text] [Related]
11. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. Junker LV; Ensminger I Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514 [TBL] [Abstract][Full Text] [Related]
12. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Peterman EJ; Dukker FM; van Grondelle R; van Amerongen H Biophys J; 1995 Dec; 69(6):2670-8. PubMed ID: 8599673 [TBL] [Abstract][Full Text] [Related]
13. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Lichtenthaler HK; Ac A; Marek MV; Kalina J; Urban O Plant Physiol Biochem; 2007 Aug; 45(8):577-88. PubMed ID: 17587589 [TBL] [Abstract][Full Text] [Related]
15. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Falcioni R; Antunes WC; Demattê JAM; Nanni MR Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112184 [TBL] [Abstract][Full Text] [Related]
16. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related]
17. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model. Yang J; Yang S; Zhang Y; Shi S; Du L Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125 [TBL] [Abstract][Full Text] [Related]
18. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model]. Wang H; Shi R; Liu PD; Gao W Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches. Gitelson A; Solovchenko A J Photochem Photobiol B; 2018 Jan; 178():537-544. PubMed ID: 29247926 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O Zhang X; He Y; Wang C; Xu F; Li X; Tan C; Chen D; Wang G; Shi L Front Plant Sci; 2019; 10():1047. PubMed ID: 31507626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]