BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32683279)

  • 1. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum.
    Sharma S; Compant S; Ballhausen MB; Ruppel S; Franken P
    Microbiol Res; 2020 Nov; 240():126556. PubMed ID: 32683279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium.
    Zhang L; Xu M; Liu Y; Zhang F; Hodge A; Feng G
    New Phytol; 2016 May; 210(3):1022-32. PubMed ID: 27074400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions.
    Zhang L; Shi N; Fan J; Wang F; George TS; Feng G
    Environ Microbiol; 2018 Jul; 20(7):2639-2651. PubMed ID: 29901256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.
    Köhl L; Lukasiewicz CE; van der Heijden MG
    Plant Cell Environ; 2016 Jan; 39(1):136-46. PubMed ID: 26147222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.
    Wang F; Shi N; Jiang R; Zhang F; Feng G
    J Exp Bot; 2016 Mar; 67(6):1689-701. PubMed ID: 26802172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover.
    Wang F; Kertesz MA; Feng G
    Mycorrhiza; 2019 Jul; 29(4):351-362. PubMed ID: 31044298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.
    Ordoñez YM; Fernandez BR; Lara LS; Rodriguez A; Uribe-Vélez D; Sanders IR
    PLoS One; 2016; 11(6):e0154438. PubMed ID: 27253975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L.
    Nacoon S; Jogloy S; Riddech N; Mongkolthanaruk W; Kuyper TW; Boonlue S
    Sci Rep; 2020 Mar; 10(1):4916. PubMed ID: 32188930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi.
    Scheublin TR; Sanders IR; Keel C; van der Meer JR
    ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].
    Jiang X; Chen WL; Xu CX; Zhu HH; Yao Q
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1186-92. PubMed ID: 26259462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions.
    Bharadwaj DP; Alström S; Lundquist PO
    Mycorrhiza; 2012 Aug; 22(6):437-47. PubMed ID: 22081167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.
    Calvo-Polanco M; Molina S; Zamarreño AM; García-Mina JM; Aroca R
    Plant Cell Physiol; 2014 May; 55(5):1017-29. PubMed ID: 24553847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium.
    Zhang L; Feng G; Declerck S
    ISME J; 2018 Oct; 12(10):2339-2351. PubMed ID: 29899507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.
    de Souza TAF; de Andrade LA; Freitas H; da Silva Sandim A
    Microb Ecol; 2018 Jul; 76(1):102-112. PubMed ID: 28560606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition.
    Facelli E; Smith SE; Facelli JM; Christophersen HM; Andrew Smith F
    New Phytol; 2010 Mar; 185(4):1050-61. PubMed ID: 20356347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation.
    Hanlon MT; Coenen C
    New Phytol; 2011 Feb; 189(3):701-709. PubMed ID: 21091696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMF and PSB applications modulated the biochemical and mineral content of the eggplants.
    Sharma M; Delta AK; Dhanda PS; Kaushik P; Mohanta YK; Saravanan M; Mohanta TK
    J Basic Microbiol; 2022 Nov; 62(11):1371-1378. PubMed ID: 35996801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.
    Zhang J; Wang PC; Fang L; Zhang QA; Yan CS; Chen JY
    Pol J Microbiol; 2017 Mar; 66(1):57-65. PubMed ID: 29359698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition.
    Gamalero E; Trotta A; Massa N; Copetta A; Martinotti MG; Berta G
    Mycorrhiza; 2004 Jul; 14(3):185-92. PubMed ID: 15197635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi.
    Lecomte J; St-Arnaud M; Hijri M
    FEMS Microbiol Lett; 2011 Apr; 317(1):43-51. PubMed ID: 21219415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.