These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32683707)
21. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization. Jorissen HJ; Quest B; Lindner I; Tandeau de Marsac N; Gärtner W Photochem Photobiol; 2002 May; 75(5):554-9. PubMed ID: 12017484 [TBL] [Abstract][Full Text] [Related]
22. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Kraskov A; Nguyen AD; Goerling J; Buhrke D; Velazquez Escobar F; Fernandez Lopez M; Michael N; Sauthof L; Schmidt A; Piwowarski P; Yang Y; Stensitzki T; Adam S; Bartl F; Schapiro I; Heyne K; Siebert F; Scheerer P; Mroginski MA; Hildebrandt P Biochemistry; 2020 Mar; 59(9):1023-1037. PubMed ID: 32073262 [TBL] [Abstract][Full Text] [Related]
23. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Yang X; Kuk J; Moffat K Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14715-20. PubMed ID: 18799746 [TBL] [Abstract][Full Text] [Related]
24. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. van Thor JJ; Mackeen M; Kuprov I; Dwek RA; Wormald MR Biophys J; 2006 Sep; 91(5):1811-22. PubMed ID: 16751241 [TBL] [Abstract][Full Text] [Related]
25. Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation. Mizutani Y; Tokutomi S; Aoyagi K; Horitsu K; Kitagawa T Biochemistry; 1991 Nov; 30(44):10693-700. PubMed ID: 1657153 [TBL] [Abstract][Full Text] [Related]
26. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363 [TBL] [Abstract][Full Text] [Related]
27. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. Wagner JR; Zhang J; von Stetten D; Günther M; Murgida DH; Mroginski MA; Walker JM; Forest KT; Hildebrandt P; Vierstra RD J Biol Chem; 2008 May; 283(18):12212-26. PubMed ID: 18192276 [TBL] [Abstract][Full Text] [Related]
28. Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation. Esteban B; Carrascal M; Abian J; Lamparter T Biochemistry; 2005 Jan; 44(2):450-61. PubMed ID: 15641769 [TBL] [Abstract][Full Text] [Related]
29. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation. Jabben M; Shanklin J; Vierstra RD J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468 [TBL] [Abstract][Full Text] [Related]
30. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556 [TBL] [Abstract][Full Text] [Related]
31. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Carrillo M; Pandey S; Sanchez J; Noda M; Poudyal I; Aldama L; Malla TN; Claesson E; Wahlgren WY; Feliz D; Šrajer V; Maj M; Castillon L; Iwata S; Nango E; Tanaka R; Tanaka T; Fangjia L; Tono K; Owada S; Westenhoff S; Stojković EA; Schmidt M Structure; 2021 Jul; 29(7):743-754.e4. PubMed ID: 33756101 [TBL] [Abstract][Full Text] [Related]
32. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form. Hennig L; Schäfer E J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666 [TBL] [Abstract][Full Text] [Related]
33. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
35. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. Takala H; Lehtivuori HK; Berntsson O; Hughes A; Nanekar R; Niebling S; Panman M; Henry L; Menzel A; Westenhoff S; Ihalainen JA J Biol Chem; 2018 May; 293(21):8161-8172. PubMed ID: 29622676 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. Mailliet J; Psakis G; Feilke K; Sineshchekov V; Essen LO; Hughes J J Mol Biol; 2011 Oct; 413(1):115-27. PubMed ID: 21888915 [TBL] [Abstract][Full Text] [Related]
37. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Rockwell NC; Shang L; Martin SS; Lagarias JC Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6123-7. PubMed ID: 19339496 [TBL] [Abstract][Full Text] [Related]
38. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome. Singh BR; Song PS; Eilfeld P; Rüdiger W Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252 [TBL] [Abstract][Full Text] [Related]
40. The system of phytochromes: photobiophysics and photobiochemistry in vivo. Sineshchekov VA Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]