These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32684276)

  • 1. uKIN Combines New and Prior Information with Guided Network Propagation to Accurately Identify Disease Genes.
    Hristov BH; Chazelle B; Singh M
    Cell Syst; 2020 Jun; 10(6):470-479.e3. PubMed ID: 32684276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-Based Coverage of Mutational Profiles Reveals Cancer Genes.
    Hristov BH; Singh M
    Cell Syst; 2017 Sep; 5(3):221-229.e4. PubMed ID: 28957656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling hidden connections in omics data via pyPARAGON: an integrative hybrid approach for disease network construction.
    Arici MK; Tuncbag N
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39163205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network propagation: a universal amplifier of genetic associations.
    Cowen L; Ideker T; Raphael BJ; Sharan R
    Nat Rev Genet; 2017 Sep; 18(9):551-562. PubMed ID: 28607512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using whole-exome sequencing and protein interaction networks to prioritize candidate genes for germline cutaneous melanoma susceptibility.
    Yepes S; Tucker MA; Koka H; Xiao Y; Jones K; Vogt A; Burdette L; Luo W; Zhu B; Hutchinson A; Yeager M; Hicks B; Freedman ND; Chanock SJ; Goldstein AM; Yang XR
    Sci Rep; 2020 Oct; 10(1):17198. PubMed ID: 33057211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Cancer Driver Gene Prediction by Protein-Protein Interaction Network.
    Liu C; Dai Y; Yu K; Zhang ZK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2231-2240. PubMed ID: 33656997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks.
    Shang H; Liu ZP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):336-346. PubMed ID: 31095494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NetCore: a network propagation approach using node coreness.
    Barel G; Herwig R
    Nucleic Acids Res; 2020 Sep; 48(17):e98. PubMed ID: 32735660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m
    Ma Q; Zhang SW; Zhang SY
    Methods; 2022 Jul; 203():125-138. PubMed ID: 35436514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network topology reveals key cardiovascular disease genes.
    Sarajlić A; Janjić V; Stojković N; Radak D; Pržulj N
    PLoS One; 2013; 8(8):e71537. PubMed ID: 23977067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining susceptibility gene modules and disease risk genes from SNP data by combining network topological properties with support vector regression.
    Hua L; Zhou P; Liu H; Li L; Yang Z; Liu ZC
    J Theor Biol; 2011 Nov; 289():225-36. PubMed ID: 21910999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion.
    Žitnik M; Zupan B
    J Comput Biol; 2015 Jun; 22(6):595-608. PubMed ID: 25658751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.