These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 32684529)
1. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips. Shinozaki T; Suzuki E J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529 [TBL] [Abstract][Full Text] [Related]
2. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models. Breskin A; Cole SR; Westreich D Epidemiology; 2018 May; 29(3):352-355. PubMed ID: 29384789 [TBL] [Abstract][Full Text] [Related]
3. Marginal structural models as a tool for standardization. Sato T; Matsuyama Y Epidemiology; 2003 Nov; 14(6):680-6. PubMed ID: 14569183 [TBL] [Abstract][Full Text] [Related]
4. Application of Causal Inference Methods in the Analysis of Observational Neurosurgical Data: G-Formula and Marginal Structural Model. Kawahara T; Shiba K; Tsuchiya A World Neurosurg; 2022 May; 161():310-315. PubMed ID: 35505549 [TBL] [Abstract][Full Text] [Related]
5. Using generalized linear models to implement g-estimation for survival data with time-varying confounding. Seaman SR; Keogh RH; Dukes O; Vansteelandt S Stat Med; 2021 Jul; 40(16):3779-3790. PubMed ID: 33942919 [TBL] [Abstract][Full Text] [Related]
6. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models. Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186 [TBL] [Abstract][Full Text] [Related]
7. Marginal structural models for multilevel clustered data. Wu Y; Langworthy B; Wang M Biostatistics; 2022 Oct; 23(4):1056-1073. PubMed ID: 35904119 [TBL] [Abstract][Full Text] [Related]
8. A graphical perspective of marginal structural models: An application for the estimation of the effect of physical activity on blood pressure. Talbot D; Rossi AM; Bacon SL; Atherton J; Lefebvre G Stat Methods Med Res; 2018 Aug; 27(8):2428-2436. PubMed ID: 27920366 [TBL] [Abstract][Full Text] [Related]
9. Marginal Structural Models: unbiased estimation for longitudinal studies. Moodie EE; Stephens DA Int J Public Health; 2011 Feb; 56(1):117-9. PubMed ID: 20931349 [TBL] [Abstract][Full Text] [Related]
10. Targeted maximum likelihood based causal inference: Part I. van der Laan MJ Int J Biostat; 2010; 6(2):Article 2. PubMed ID: 21969992 [TBL] [Abstract][Full Text] [Related]
11. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. Hogan JW; Lancaster T Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439 [TBL] [Abstract][Full Text] [Related]
12. Modeling time-varying exposure using inverse probability of treatment weights. Grafféo N; Latouche A; Geskus RB; Chevret S Biom J; 2018 Mar; 60(2):323-332. PubMed ID: 29280181 [TBL] [Abstract][Full Text] [Related]
13. Data-adaptive longitudinal model selection in causal inference with collaborative targeted minimum loss-based estimation. Schnitzer ME; Sango J; Ferreira Guerra S; van der Laan MJ Biometrics; 2020 Mar; 76(1):145-157. PubMed ID: 31397506 [TBL] [Abstract][Full Text] [Related]
14. Constructing inverse probability weights for marginal structural models. Cole SR; Hernán MA Am J Epidemiol; 2008 Sep; 168(6):656-64. PubMed ID: 18682488 [TBL] [Abstract][Full Text] [Related]
15. Inverse probability weighting and doubly robust standardization in the relative survival framework. Syriopoulou E; Rutherford MJ; Lambert PC Stat Med; 2021 Nov; 40(27):6069-6092. PubMed ID: 34523751 [TBL] [Abstract][Full Text] [Related]
16. Blood pressure and the risk of chronic kidney disease progression using multistate marginal structural models in the CRIC Study. Stephens-Shields AJ; Spieker AJ; Anderson A; Drawz P; Fischer M; Sozio SM; Feldman H; Joffe M; Yang W; Greene T; Stat Med; 2017 Nov; 36(26):4167-4181. PubMed ID: 28791722 [TBL] [Abstract][Full Text] [Related]
17. Parametric g-formula for Testing Time-Varying Causal Effects: What It Is, Why It Matters, and How to Implement It in Lavaan. Loh WW; Ren D; West SG Multivariate Behav Res; 2024; 59(5):995-1018. PubMed ID: 38963381 [TBL] [Abstract][Full Text] [Related]
18. Inverse-probability-of-treatment weighted estimation of causal parameters in the presence of error-contaminated and time-dependent confounders. Shu D; Yi GY Biom J; 2019 Nov; 61(6):1507-1525. PubMed ID: 31449324 [TBL] [Abstract][Full Text] [Related]
19. Application of Standardization for Causal Inference in Observational Studies: A Step-by-step Tutorial for Analysis Using R Software. Lee S; Lee W J Prev Med Public Health; 2022 Mar; 55(2):116-124. PubMed ID: 35391523 [TBL] [Abstract][Full Text] [Related]
20. Marginal structural models and causal inference in epidemiology. Robins JM; Hernán MA; Brumback B Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]