BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32684789)

  • 1. Modelling the Inactivation and Possible Regrowth of
    Rodríguez-López MI; Gómez-López VM; Lukseviciute V; Luksiene Z
    Food Technol Biotechnol; 2020 Mar; 58(1):64-70. PubMed ID: 32684789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective photosensitization-based inactivation of Gram (-) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries.
    Buchovec I; Lukseviciute V; Marsalka A; Reklaitis I; Luksiene Z
    Photochem Photobiol Sci; 2016 Apr; 15(4):506-16. PubMed ID: 26947225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency.
    Buchovec I; Lukseviciūtė V; Kokstaite R; Labeikyte D; Kaziukonyte L; Luksiene Z
    J Photochem Photobiol B; 2017 Jul; 172():1-10. PubMed ID: 28505496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of molds on the surface of wheat sprouts by chlorophyllin-chitosan coating in the presence of visible LED-based light.
    Lukseviciute V; Luksiene Z
    J Photochem Photobiol B; 2020 Jan; 202():111721. PubMed ID: 31790881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach to control Salmonella enterica by modern biophotonic technology: photosensitization.
    Buchovec I; Vaitonis Z; Luksiene Z
    J Appl Microbiol; 2009 Mar; 106(3):748-54. PubMed ID: 19302098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Listeria monocytogenes and Salmonella spp. on cantaloupe rinds by blue light emitting diodes (LEDs).
    Josewin SW; Kim MJ; Yuk HG
    Food Microbiol; 2018 Dec; 76():219-225. PubMed ID: 30166145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Colistin as a Trojan Horse: Inactivation of Gram-Negative Bacteria with Chlorophyllin.
    Richter P; Krüger M; Prasad B; Gastiger S; Bodenschatz M; Wieder F; Burkovski A; Geißdörfer W; Lebert M; Strauch SM
    Antibiotics (Basel); 2019 Sep; 8(4):. PubMed ID: 31547053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective inactivation of food pathogens Listeria monocytogenes and Salmonella enterica by combined treatment of hypericin-based photosensitization and high power pulsed light.
    Kairyte K; Lapinskas S; Gudelis V; Luksiene Z
    J Appl Microbiol; 2012 Jun; 112(6):1144-51. PubMed ID: 22469030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward better microbial safety of wheat sprouts: chlorophyllin-based photosensitization of seeds.
    Žudytė B; Lukšienė Ž
    Photochem Photobiol Sci; 2019 Oct; 18(10):2521-2530. PubMed ID: 31482167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature.
    Kim MJ; Yuk HG
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylenimine Increases Antibacterial Efficiency of Chlorophyllin.
    Akif FA; Mahmoud M; Prasad B; Richter P; Azizullah A; Qasim M; Anees M; Krüger M; Gastiger S; Burkovski A; Strauch SM; Lebert M
    Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Int J Food Microbiol; 2018 Nov; 285():129-135. PubMed ID: 30118951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Escherichia coli damages after chlorophyllin-based photosensitization.
    Žudytė B; Velička M; Šablinskas V; Lukšienė Ž
    J Biophotonics; 2020 Nov; 13(11):e202000144. PubMed ID: 32729182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the effect of osmotic adaptation and temperature on the non-thermal inactivation of Salmonella spp. on brioche-type products.
    Kapetanakou AE; Makariti IP; Nazou EΝ; Manios SG; Karavasilis K; Skandamis PN
    Int J Food Microbiol; 2019 May; 296():48-57. PubMed ID: 30849706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro.
    Bumah VV; Masson-Meyers DS; Enwemeka CS
    Lasers Surg Med; 2015 Sep; 47(7):595-601. PubMed ID: 26174877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What an
    Krüger M; Richter P; Strauch SM; Nasir A; Burkovski A; Antunes CA; Meißgeier T; Schlücker E; Schwab S; Lebert M
    Microorganisms; 2019 Feb; 7(2):. PubMed ID: 30813305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging.
    Luksiene Z; Buchovec I; Paskeviciute E
    J Appl Microbiol; 2010 Nov; 109(5):1540-8. PubMed ID: 20557405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli.
    Caires CSA; Leal CRB; Ramos CAN; Bogo D; Lima AR; Arruda EJ; Oliveira SL; Caires ARL; Nascimento VA
    Lasers Med Sci; 2017 Jul; 32(5):1081-1088. PubMed ID: 28429192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of milk-borne pathogens by blue light exposure.
    Dos Anjos C; Sellera FP; de Freitas LM; Gargano RG; Telles EO; Freitas RO; Baptista MS; Ribeiro MS; Lincopan N; Pogliani FC; Sabino CP
    J Dairy Sci; 2020 Feb; 103(2):1261-1268. PubMed ID: 31759598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.