These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32685138)

  • 1. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology.
    Yang S; Yao J; Quan Y; Hu M; Su R; Gao M; Han D; Yang J
    Light Sci Appl; 2020; 9():117. PubMed ID: 32685138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-Transfer Process in Surface-Enhanced Raman Scattering Based on Energy Level Locations of Rare-Earth Nd
    Zhao Z; Zhao X; Zhang M; Sun X
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.
    Li P; Wang X; Zhang X; Zhang L; Yang X; Zhao B
    Front Chem; 2019; 7():144. PubMed ID: 30941346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets.
    Lin J; Yu J; Akakuru OU; Wang X; Yuan B; Chen T; Guo L; Wu A
    Chem Sci; 2020 Aug; 11(35):9414-9420. PubMed ID: 34094207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced charge-transfer induced by conduction band electrons in aluminum-doped zinc oxide/molecule/Ag sandwich structures observed by surface-enhanced Raman spectroscopy.
    Wang Y; Jin J; Ma H; Zhang M; Li Q; Wang H; Zhao B; Ruan W; Yan G
    J Colloid Interface Sci; 2022 Mar; 610():164-172. PubMed ID: 34923264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Raman scattering based on a ZnO/Ag nanostructured substrate: an in-depth study of the SERS mechanism.
    Tran TT; Vu XH; Ngo TL; Pham TTH; Nguyen DD; Nguyen VD
    Phys Chem Chem Phys; 2023 Jun; 25(23):15941-15952. PubMed ID: 37261379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering.
    Wang Y; Zhang M; Ma H; Su H; Li A; Ruan W; Zhao B
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35038-35045. PubMed ID: 34279091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review.
    Marica I; Nekvapil F; Ștefan M; Farcău C; Falamaș A
    Beilstein J Nanotechnol; 2022; 13():472-490. PubMed ID: 35673602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-induced SERS enhancement in a MoS
    Sun H; Yao M; Song Y; Zhu L; Dong J; Liu R; Li P; Zhao B; Liu B
    Nanoscale; 2019 Nov; 11(44):21493-21501. PubMed ID: 31686063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Characterization of Zn
    Xue X; Zhang J; Chen L; Zhao C; Wang L; Chang L
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4403-4408. PubMed ID: 29442795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.
    Israelsen ND; Wooley D; Hanson C; Vargis E
    J Biol Eng; 2016; 10():2. PubMed ID: 26751120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-regulated enhanced Raman scattering on a semiconductor to study temperature-influenced enantioselective identification.
    Xu J; Li J; Liu X; Hu X; Zhou H; Gao Z; Xu J; Song YY
    Chem Sci; 2024 May; 15(19):7308-7315. PubMed ID: 38756792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance.
    Giordano AN; Rao R
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution.
    Verma AK; Singh J; Nguyen-Tri P
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10969-10983. PubMed ID: 38355426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water.
    Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y
    Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design superhydrophobic no-noble metal substrates for highly sensitive and signal stable SERS sensing.
    Xu H; Zhang Y; Wang Z; Jia Y; Yang X; Gao M
    J Colloid Interface Sci; 2024 Apr; 660():42-51. PubMed ID: 38241870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Surface-Enhanced Raman Scattering Properties of ZrO
    Ji P; Mao Z; Wang Z; Xue X; Zhang Y; Lv J; Shi X
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-Transfer Resonance and Surface Defect-Dominated WO
    Jiang L; Hu Y; Zhang H; Luo X; Yuan R; Yang X
    Anal Chem; 2022 May; 94(19):6967-6975. PubMed ID: 35289177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.