BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32685381)

  • 1. Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips.
    Delon LC; Guo Z; Kashani MN; Yang CT; Prestidge C; Thierry B
    MethodsX; 2020; 7():100980. PubMed ID: 32685381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
    Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B
    Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity.
    Mehta A; Desai A; Rudd D; Siddiqui G; Nowell CJ; Tong Z; Creek DJ; Tayalia P; Gandhi PS; Voelcker NH
    Adv Biol (Weinh); 2022 Dec; 6(12):e2200152. PubMed ID: 35999436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Theoretical and Experimental Study to Optimize Cell Differentiation in a Novel Intestinal Chip.
    Langerak N; Ahmed HMM; Li Y; Middel IR; Eslami Amirabadi H; Malda J; Masereeuw R; van Roij R
    Front Bioeng Biotechnol; 2020; 8():763. PubMed ID: 32793567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts.
    Yu W; Qu H; Hu G; Zhang Q; Song K; Guan H; Liu T; Qin J
    PLoS One; 2014; 9(2):e89966. PubMed ID: 24587156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-based sensor of fluid shear stress for microfluidics.
    Varma S; Voldman J
    Lab Chip; 2015 Mar; 15(6):1563-73. PubMed ID: 25648195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip.
    Feng S; Mao S; Zhang Q; Li W; Lin JM
    ACS Sens; 2019 Feb; 4(2):521-527. PubMed ID: 30688066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression.
    Dash SK; Patra B; Sharma V; Das SK; Verma RS
    Lab Chip; 2022 May; 22(11):2200-2211. PubMed ID: 35544034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model.
    Fois CAM; Schindeler A; Valtchev P; Dehghani F
    Biomed Microdevices; 2021 Oct; 23(4):55. PubMed ID: 34655329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER
    Quesada BAO; Cuccia J; Coates R; Nassar B; Littlefield E; Martin EC; Melvin AT
    Res Sq; 2023 Oct; ():. PubMed ID: 37886527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium response of spatially arranged cell networks to shear stress by confined single cell patterned microfluidic chips.
    Meng G; Fang F; Guo L; Liu W; Lee I; Zhao C
    Biochem Biophys Res Commun; 2022 Jun; 611():140-145. PubMed ID: 35489199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.
    Xu L; Song X; Carroll G; You L
    Integr Biol (Camb); 2020 Dec; 12(12):303-310. PubMed ID: 33420790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles.
    Ross EJ; Gordon ER; Sothers H; Darji R; Baron O; Haithcock D; Prabhakarpandian B; Pant K; Myers RM; Cooper SJ; Cox NJ
    Sci Rep; 2021 Jul; 11(1):14053. PubMed ID: 34234242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion.
    Li W; Mao S; Khan M; Zhang Q; Huang Q; Feng S; Lin JM
    ACS Sens; 2019 Jun; 4(6):1710-1715. PubMed ID: 31094503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.