These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32685381)

  • 1. Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips.
    Delon LC; Guo Z; Kashani MN; Yang CT; Prestidge C; Thierry B
    MethodsX; 2020; 7():100980. PubMed ID: 32685381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
    Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B
    Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity.
    Mehta A; Desai A; Rudd D; Siddiqui G; Nowell CJ; Tong Z; Creek DJ; Tayalia P; Gandhi PS; Voelcker NH
    Adv Biol (Weinh); 2022 Dec; 6(12):e2200152. PubMed ID: 35999436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Theoretical and Experimental Study to Optimize Cell Differentiation in a Novel Intestinal Chip.
    Langerak N; Ahmed HMM; Li Y; Middel IR; Eslami Amirabadi H; Malda J; Masereeuw R; van Roij R
    Front Bioeng Biotechnol; 2020; 8():763. PubMed ID: 32793567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts.
    Yu W; Qu H; Hu G; Zhang Q; Song K; Guan H; Liu T; Qin J
    PLoS One; 2014; 9(2):e89966. PubMed ID: 24587156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-based sensor of fluid shear stress for microfluidics.
    Varma S; Voldman J
    Lab Chip; 2015 Mar; 15(6):1563-73. PubMed ID: 25648195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip.
    Feng S; Mao S; Zhang Q; Li W; Lin JM
    ACS Sens; 2019 Feb; 4(2):521-527. PubMed ID: 30688066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression.
    Dash SK; Patra B; Sharma V; Das SK; Verma RS
    Lab Chip; 2022 May; 22(11):2200-2211. PubMed ID: 35544034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model.
    Fois CAM; Schindeler A; Valtchev P; Dehghani F
    Biomed Microdevices; 2021 Oct; 23(4):55. PubMed ID: 34655329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER
    Quesada BAO; Cuccia J; Coates R; Nassar B; Littlefield E; Martin EC; Melvin AT
    Res Sq; 2023 Oct; ():. PubMed ID: 37886527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium response of spatially arranged cell networks to shear stress by confined single cell patterned microfluidic chips.
    Meng G; Fang F; Guo L; Liu W; Lee I; Zhao C
    Biochem Biophys Res Commun; 2022 Jun; 611():140-145. PubMed ID: 35489199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.
    Xu L; Song X; Carroll G; You L
    Integr Biol (Camb); 2020 Dec; 12(12):303-310. PubMed ID: 33420790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles.
    Ross EJ; Gordon ER; Sothers H; Darji R; Baron O; Haithcock D; Prabhakarpandian B; Pant K; Myers RM; Cooper SJ; Cox NJ
    Sci Rep; 2021 Jul; 11(1):14053. PubMed ID: 34234242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion.
    Li W; Mao S; Khan M; Zhang Q; Huang Q; Feng S; Lin JM
    ACS Sens; 2019 Jun; 4(6):1710-1715. PubMed ID: 31094503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.