These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32686228)

  • 1. Multicompartment Polymeric Nanocarriers for Biomedical Applications.
    Nayanathara U; Kermaniyan SS; Such GK
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000298. PubMed ID: 32686228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles.
    York-Duran MJ; Godoy-Gallardo M; Labay C; Urquhart AJ; Andresen TL; Hosta-Rigau L
    Colloids Surf B Biointerfaces; 2017 Apr; 152():199-213. PubMed ID: 28110042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicompartment Hydrogels.
    Schmidt BVKJ
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100895. PubMed ID: 35092101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications.
    Koroleva M
    Phys Chem Chem Phys; 2023 Aug; 25(33):21836-21859. PubMed ID: 37565484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery.
    Onaca O; Enea R; Hughes DW; Meier W
    Macromol Biosci; 2009 Feb; 9(2):129-39. PubMed ID: 19107717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications.
    Gao Y; Gao C; Fan Y; Sun H; Du J
    Biomacromolecules; 2023 Dec; 24(12):5511-5538. PubMed ID: 37933444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery.
    Nicolas J; Mura S; Brambilla D; Mackiewicz N; Couvreur P
    Chem Soc Rev; 2013 Feb; 42(3):1147-235. PubMed ID: 23238558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review.
    Tanbour R; Martins AM; Pitt WG; Husseini GA
    Curr Pharm Des; 2016; 22(19):2796-807. PubMed ID: 26898742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-based stimuli-responsive nanosystems for biomedical applications.
    Joglekar M; Trewyn BG
    Biotechnol J; 2013 Aug; 8(8):931-45. PubMed ID: 23843342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications.
    Rippe M; Cosenza V; Auzély-Velty R
    Pharmaceutics; 2019 Jul; 11(7):. PubMed ID: 31311150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric micelles for anticancer drug delivery.
    Majumder N; G Das N; Das SK
    Ther Deliv; 2020 Oct; 11(10):613-635. PubMed ID: 32933425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-responsive polymersomes for cancer therapy.
    Thambi T; Park JH; Lee DS
    Biomater Sci; 2016 Jan; 4(1):55-69. PubMed ID: 26456625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics.
    Thotakura N; Parashar P; Raza K
    Expert Opin Drug Metab Toxicol; 2021 Mar; 17(3):323-332. PubMed ID: 33292023
    [No Abstract]   [Full Text] [Related]  

  • 16. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature.
    Karabasz A; Bzowska M; Szczepanowicz K
    Int J Nanomedicine; 2020; 15():8673-8696. PubMed ID: 33192061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature.
    Li W; Huang L; Ying X; Jian Y; Hong Y; Hu F; Du Y
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3126-31. PubMed ID: 25630768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes.
    Paleos CM; Pantos A
    Acc Chem Res; 2014 May; 47(5):1475-82. PubMed ID: 24735049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanohybrid carriers: the yin-yang equilibrium between natural and synthetic in biomedicine.
    Ghorbanizamani F; Moulahoum H; Zihnioglu F; Timur S
    Biomater Sci; 2020 Jun; 8(12):3237-3247. PubMed ID: 32484498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region.
    Junnuthula V; Sadeghi Boroujeni A; Cao S; Tavakoli S; Ridolfo R; Toropainen E; Ruponen M; van Hest JCM; Urtti A
    Pharmaceutics; 2021 Mar; 13(4):. PubMed ID: 33810242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.