These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32686713)
1. MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse. Bonhoure N; Praz V; Moir RD; Willemin G; Mange F; Moret C; Willis IM; Hernandez N Sci Rep; 2020 Jul; 10(1):11956. PubMed ID: 32686713 [TBL] [Abstract][Full Text] [Related]
2. Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Willis IM; Moir RD; Hernandez N Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315 [TBL] [Abstract][Full Text] [Related]
3. Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock. Mange F; Praz V; Migliavacca E; Willis IM; Schütz F; Hernandez N; Genome Res; 2017 Jun; 27(6):973-984. PubMed ID: 28341772 [TBL] [Abstract][Full Text] [Related]
4. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation. Chen CY; Lanz RB; Walkey CJ; Chang WH; Lu W; Johnson DL Cell Rep; 2018 Aug; 24(7):1852-1864. PubMed ID: 30110641 [TBL] [Abstract][Full Text] [Related]
5. Maf1, a new player in the regulation of human RNA polymerase III transcription. Reina JH; Azzouz TN; Hernandez N PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138 [TBL] [Abstract][Full Text] [Related]
6. Maf1 ameliorates cardiac hypertrophy by inhibiting RNA polymerase III through ERK1/2. Sun Y; Chen C; Xue R; Wang Y; Dong B; Li J; Chen C; Jiang J; Fan W; Liang Z; Huang H; Fang R; Dai G; Yan Y; Yang T; Li X; Huang ZP; Dong Y; Liu C Theranostics; 2019; 9(24):7268-7281. PubMed ID: 31695767 [No Abstract] [Full Text] [Related]
7. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass. Phillips E; Ahmad N; Sun L; Iben J; Walkey CJ; Rusin A; Yuen T; Rosen CJ; Willis IM; Zaidi M; Johnson DL Elife; 2022 May; 11():. PubMed ID: 35611941 [TBL] [Abstract][Full Text] [Related]
8. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183 [TBL] [Abstract][Full Text] [Related]
9. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713 [TBL] [Abstract][Full Text] [Related]
10. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation. Moir RD; Lee J; Willis IM J Biol Chem; 2012 Aug; 287(36):30833-41. PubMed ID: 22810236 [TBL] [Abstract][Full Text] [Related]
11. MAF1 represses CDKN1A through a Pol III-dependent mechanism. Lee YL; Li YC; Su CH; Chiao CH; Lin IH; Hsu MT Elife; 2015 Jun; 4():e06283. PubMed ID: 26067234 [TBL] [Abstract][Full Text] [Related]
12. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Orioli A; Praz V; Lhôte P; Hernandez N Genome Res; 2016 May; 26(5):624-35. PubMed ID: 26941251 [TBL] [Abstract][Full Text] [Related]
13. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Johnson SS; Zhang C; Fromm J; Willis IM; Johnson DL Mol Cell; 2007 May; 26(3):367-79. PubMed ID: 17499043 [TBL] [Abstract][Full Text] [Related]
14. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. Desai N; Lee J; Upadhya R; Chu Y; Moir RD; Willis IM J Biol Chem; 2005 Feb; 280(8):6455-62. PubMed ID: 15590667 [TBL] [Abstract][Full Text] [Related]
15. Contrasting effects of whole-body and hepatocyte-specific deletion of the RNA polymerase III repressor Willemin G; Mange F; Praz V; Lorrain S; Cousin P; Roger C; Willis IM; Hernandez N Front Mol Biosci; 2023; 10():1297800. PubMed ID: 38143800 [TBL] [Abstract][Full Text] [Related]
16. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. Rohira AD; Chen CY; Allen JR; Johnson DL J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667 [TBL] [Abstract][Full Text] [Related]
17. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. Goodfellow SJ; Graham EL; Kantidakis T; Marshall L; Coppins BA; Oficjalska-Pham D; Gérard M; Lefebvre O; White RJ J Mol Biol; 2008 May; 378(3):481-91. PubMed ID: 18377933 [TBL] [Abstract][Full Text] [Related]
18. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Upadhya R; Lee J; Willis IM Mol Cell; 2002 Dec; 10(6):1489-94. PubMed ID: 12504022 [TBL] [Abstract][Full Text] [Related]
19. RNA polymerase III under control: repression and de-repression. Boguta M; Graczyk D Trends Biochem Sci; 2011 Sep; 36(9):451-6. PubMed ID: 21816617 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major. Rivera-Rivas LA; Florencio-Martínez LE; Romero-Meza G; Ortega-Ortiz RC; Manning-Cela RG; Carrero JC; Nepomuceno-Mejía T; Martínez-Calvillo S FASEB J; 2024 Aug; 38(16):e23888. PubMed ID: 39157983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]