BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32687165)

  • 41. KDM6A-Mediated Expression of the Long Noncoding RNA DINO Causes TP53 Tumor Suppressor Stabilization in Human Papillomavirus 16 E7-Expressing Cells.
    Sharma S; Munger K
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269126
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
    Santos L; Mention K; Cavusoglu-Doran K; Sanz DJ; Bacalhau M; Lopes-Pacheco M; Harrison PT; Farinha CM
    J Cyst Fibros; 2022 Jan; 21(1):181-187. PubMed ID: 34103250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review).
    Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA
    Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive characterization of RB1 mutant and MYCN amplified retinoblastoma cell lines.
    Schwermer M; Hiber M; Dreesmann S; Rieb A; Theißen J; Herold T; Schramm A; Temming P; Steenpass L
    Exp Cell Res; 2019 Feb; 375(2):92-99. PubMed ID: 30584916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generation of NERCe003-A-3, a p53 compound heterozygous mutation human embryonic stem cell line, by CRISPR/Cas9 editing.
    Li Y; Huang C; Zha L; Kong M; Yang Q; Zhu Y; Peng Y; Ouyang Q; Lu G; Lin G; Zhou D
    Stem Cell Res; 2019 Jan; 34():101371. PubMed ID: 30658254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pan-Cancer Molecular Patterns and Biological Implications Associated with a Tumor-Specific Molecular Signature.
    Rocha D; García IA; González Montoro A; Llera A; Prato L; Girotti MR; Soria G; Fernández EA
    Cells; 2020 Dec; 10(1):. PubMed ID: 33396205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 49. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing.
    Reuven N; Adler J; Broennimann K; Myers N; Shaul Y
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain.
    Ma S; Wang X; Hu Y; Lv J; Liu C; Liao K; Guo X; Wang D; Lin Y; Rong Z
    Nucleic Acids Res; 2020 Oct; 48(18):10590-10601. PubMed ID: 32986839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research.
    Raper AT; Stephenson AA; Suo Z
    J Am Chem Soc; 2018 Sep; 140(36):11142-11152. PubMed ID: 30160947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in
    Stolte B; Iniguez AB; Dharia NV; Robichaud AL; Conway AS; Morgan AM; Alexe G; Schauer NJ; Liu X; Bird GH; Tsherniak A; Vazquez F; Buhrlage SJ; Walensky LD; Stegmaier K
    J Exp Med; 2018 Aug; 215(8):2137-2155. PubMed ID: 30045945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/CAS9-based DNA damage response screens reveal gene-drug interactions.
    Su D; Feng X; Colic M; Wang Y; Zhang C; Wang C; Tang M; Hart T; Chen J
    DNA Repair (Amst); 2020 Mar; 87():102803. PubMed ID: 31991288
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening.
    Álvarez MM; Biayna J; Supek F
    Nat Commun; 2022 Aug; 13(1):4520. PubMed ID: 35927263
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.
    Leibowitz ML; Papathanasiou S; Doerfler PA; Blaine LJ; Sun L; Yao Y; Zhang CZ; Weiss MJ; Pellman D
    Nat Genet; 2021 Jun; 53(6):895-905. PubMed ID: 33846636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.
    Luo J; Lu L; Gu Y; Huang R; Gui L; Li S; Qi X; Zheng W; Chao T; Zheng Q; Liang Y; Zhang L
    J Biotechnol; 2018 Sep; 281():11-20. PubMed ID: 29886029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.