These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32687311)

  • 1. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure.
    Rossi TP; Erhart P; Kuisma M
    ACS Nano; 2020 Aug; 14(8):9963-9971. PubMed ID: 32687311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Hot-Carrier Distributions of Plasmonic Nanostructures through Surface Alloying.
    Fojt J; Rossi TP; Kumar PV; Erhart P
    ACS Nano; 2024 Feb; 18(8):6398-6405. PubMed ID: 38363179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.
    Tan S; Liu L; Dai Y; Ren J; Zhao J; Petek H
    J Am Chem Soc; 2017 May; 139(17):6160-6168. PubMed ID: 28402118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-induced hot carriers in metallic nanoparticles.
    Manjavacas A; Liu JG; Kulkarni V; Nordlander P
    ACS Nano; 2014 Aug; 8(8):7630-8. PubMed ID: 24960573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between plasmon and single-particle excitations in a metal nanocluster.
    Ma J; Wang Z; Wang LW
    Nat Commun; 2015 Dec; 6():10107. PubMed ID: 26673449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces.
    Kumar PV; Rossi TP; Marti-Dafcik D; Reichmuth D; Kuisma M; Erhart P; Puska MJ; Norris DJ
    ACS Nano; 2019 Mar; 13(3):3188-3195. PubMed ID: 30768238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.
    Gilbertson AM; Francescato Y; Roschuk T; Shautsova V; Chen Y; Sidiropoulos TP; Hong M; Giannini V; Maier SA; Cohen LF; Oulton RF
    Nano Lett; 2015 May; 15(5):3458-64. PubMed ID: 25915785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon induced hot carrier distribution in Ag
    Mokkath JH
    Chemphyschem; 2024 Mar; 25(5):e202300602. PubMed ID: 38185742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO
    Moon SY; Song HC; Gwag EH; Nedrygailov II; Lee C; Kim JJ; Doh WH; Park JY
    Nanoscale; 2018 Dec; 10(47):22180-22188. PubMed ID: 30484456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.
    You X; Ramakrishna S; Seideman T
    J Phys Chem Lett; 2018 Jan; 9(1):141-145. PubMed ID: 29256610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry.
    Liu T; Besteiro LV; Liedl T; Correa-Duarte MA; Wang Z; Govorov AO
    Nano Lett; 2019 Feb; 19(2):1395-1407. PubMed ID: 30681343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.