These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 32687320)

  • 21. Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries.
    Fan W; Jiang M; Liu G; Weng W; Yang J; Yao X
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17594-17600. PubMed ID: 35389629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Cycling Stability of All-Solid-State Lithium-Sulfur Battery through Nonconductive Polar Hosts.
    Jin T; Liang K; Yu JH; Wang T; Li Y; Li TD; Ong SP; Yu JS; Yang Y
    Nano Lett; 2024 Jun; 24(22):6625-6633. PubMed ID: 38788161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Capacity and Superior Cyclic Performances of All-Solid-State Lithium-Sulfur Batteries Enabled by a High-Conductivity Li
    Yi J; Chen L; Liu Y; Geng H; Fan LZ
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36774-36781. PubMed ID: 31508932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembling All-Solid-State Lithium-Sulfur Batteries with Li
    Kızılaslan A; Akbulut H
    Chempluschem; 2019 Feb; 84(2):183-189. PubMed ID: 31950696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte.
    Wang D; Jhang LJ; Kou R; Liao M; Zheng S; Jiang H; Shi P; Li GX; Meng K; Wang D
    Nat Commun; 2023 Apr; 14(1):1895. PubMed ID: 37019929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed Ionically/Electronically Conductive Double-Phase Interface Enhanced Solid-State Charge Transfer for a High-Performance All-Solid-State Li-S Battery.
    Wang L; Yin X; Li B; Zheng GW
    Nano Lett; 2022 Jan; 22(1):433-440. PubMed ID: 34964640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Surface Area N-Doped Carbon Fibers with Accessible Reaction Sites for All-Solid-State Lithium-Sulfur Batteries.
    Sun X; Li Q; Cao D; Wang Y; Anderson A; Zhu H
    Small; 2022 Feb; 18(6):e2105678. PubMed ID: 34851029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic Defect Engineering and Interface Stability of Activated Carbon Nanotubes Enabling Ultralong Lifespan All-Solid-State Lithium-Sulfur Batteries.
    Wang C; Wu Y; Gao J; Sun X; Zhao Q; Si W; Zhang Y; Wang K; Zhao F; Ohsaka T; Matsumoto F; Huang C; Wu J
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40496-40507. PubMed ID: 37594748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium-Sulfur Battery Cathodes.
    Li X; Cheng X; Gao M; Ren D; Liu Y; Guo Z; Shang C; Sun L; Pan H
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10717-10729. PubMed ID: 28233993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing Ionic Conductivity and Electrochemical Stability of Li
    Gao Y; Gao J; Zhang Z; Wu Y; Sun X; Zhao F; Zhang Y; Song D; Si W; Zhao Q; Yuan X; Wu J
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18843-18854. PubMed ID: 38586920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Formed Electronic/Ionic Conductive Fe
    Wan H; Cai L; Yao Y; Weng W; Feng Y; Mwizerwa JP; Liu G; Yu Y; Yao X
    Small; 2020 Aug; 16(34):e2001574. PubMed ID: 32696584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries.
    Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X
    Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Li
    Yen YJ; Chung SH
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58712-58722. PubMed ID: 34846840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing Cathode Films for Practical All-Solid-State Lithium-Sulfur Batteries.
    Ye C; Xu S; Li H; Shan J; Qiao SZ
    Adv Mater; 2024 Jul; ():e2407738. PubMed ID: 39075816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium-Sulfur Batteries.
    Huang YC; Yen YJ; Tseng YH; Chung SH
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.