These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 32687345)

  • 21. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors.
    Ahmad S; Usman Mirza M; Yean Kee L; Nazir M; Abdul Rahman N; Trant JF; Abdullah I
    Chem Biol Drug Des; 2021 Oct; 98(4):604-619. PubMed ID: 34148292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apigenin analogues as SARS-CoV-2 main protease inhibitors:
    Farhat A; Ben Hlima H; Khemakhem B; Ben Halima Y; Michaud P; Abdelkafi S; Fendri I
    Bioengineered; 2022 Feb; 13(2):3350-3361. PubMed ID: 35048792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists.
    Zhang S; Krumberger M; Morris MA; Parrocha CMT; Kreutzer AG; Nowick JS
    Eur J Med Chem; 2021 Jun; 218():113390. PubMed ID: 33812315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PL
    Jade D; Ayyamperumal S; Tallapaneni V; Joghee Nanjan CM; Barge S; Mohan S; Nanjan MJ
    Eur J Pharmacol; 2021 Jun; 901():174082. PubMed ID: 33823185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo design of SARS-CoV-2 main protease inhibitors with characteristic binding modes.
    Zhu Y; Meng J; Feng B; Zhao Y; Zang Y; Lu L; Su M; Yang Q; Zhang Q; Feng L; Zhao J; Shao M; Ma Y; Yang X; Yang H; Li J; Jiang X; Rao Z
    Structure; 2024 Sep; 32(9):1327-1334.e3. PubMed ID: 38925121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening.
    Chtita S; Belhassan A; Aouidate A; Belaidi S; Bouachrine M; Lakhlifi T
    Comb Chem High Throughput Screen; 2021; 24(3):441-454. PubMed ID: 32748740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease.
    Mandour YM; Zlotos DP; Alaraby Salem M
    J Biomol Struct Dyn; 2022 Mar; 40(5):2327-2338. PubMed ID: 33094680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2.
    Yassine R; Makrem M; Farhat F
    Biomed Res Int; 2021; 2021():6696012. PubMed ID: 34124259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease.
    Deeks HM; Walters RK; Barnoud J; Glowacki DR; Mulholland AJ
    J Chem Inf Model; 2020 Dec; 60(12):5803-5814. PubMed ID: 33174415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses.
    Luttens A; Gullberg H; Abdurakhmanov E; Vo DD; Akaberi D; Talibov VO; Nekhotiaeva N; Vangeel L; De Jonghe S; Jochmans D; Krambrich J; Tas A; Lundgren B; Gravenfors Y; Craig AJ; Atilaw Y; Sandström A; Moodie LWK; Lundkvist Å; van Hemert MJ; Neyts J; Lennerstrand J; Kihlberg J; Sandberg K; Danielson UH; Carlsson J
    J Am Chem Soc; 2022 Feb; 144(7):2905-2920. PubMed ID: 35142215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188.
    Lockbaum GJ; Reyes AC; Lee JM; Tilvawala R; Nalivaika EA; Ali A; Kurt Yilmaz N; Thompson PR; Schiffer CA
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33503819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface.
    Liang J; Karagiannis C; Pitsillou E; Darmawan KK; Ng K; Hung A; Karagiannis TC
    Comput Biol Chem; 2020 Dec; 89():107372. PubMed ID: 32911432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay.
    Pitsillou E; Liang J; Ververis K; Hung A; Karagiannis TC
    J Mol Graph Model; 2021 May; 104():107851. PubMed ID: 33556646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses.
    Theerawatanasirikul S; Kuo CJ; Phecharat N; Chootip J; Lekcharoensuk C; Lekcharoensuk P
    Antiviral Res; 2020 Oct; 182():104927. PubMed ID: 32910955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M
    Mohan A; Rendine N; Mohammed MKS; Jeeva A; Ji HF; Talluri VR
    Mol Divers; 2022 Jun; 26(3):1645-1661. PubMed ID: 34480682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin.
    Kwofie SK; Broni E; Asiedu SO; Kwarko GB; Dankwa B; Enninful KS; Tiburu EK; Wilson MD
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33466743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach.
    Gupta Y; Kumar S; Zak SE; Jones KA; Upadhyay C; Sharma N; Azizi SA; Kathayat RS; Poonam ; Herbert AS; Durvasula R; Dickinson BC; Dye JM; Rathi B; Kempaiah P
    Bioorg Med Chem; 2021 Oct; 47():116393. PubMed ID: 34509862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L.
    Costanzi E; Kuzikov M; Esposito F; Albani S; Demitri N; Giabbai B; Camasta M; Tramontano E; Rossetti G; Zaliani A; Storici P
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions.
    Shawky AM; Almalki FA; Alzahrani HA; Abdalla AN; Youssif BGM; Ibrahim NA; Gamal M; El-Sherief HAM; Abdel-Fattah MM; Hefny AA; Abdelazeem AH; Gouda AM
    Eur J Med Chem; 2024 Nov; 277():116704. PubMed ID: 39121741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.