These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32687698)

  • 21. Robust Cellulose Nanocrystal-Based Self-Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting.
    Zhang X; Li M; Zhang F; Li Q; Xiao J; Lin Q; Qing G
    Small; 2023 Dec; 19(50):e2304603. PubMed ID: 37635120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting.
    Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y
    Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C
    Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting.
    Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation promoted osmotic energy conversion in black phosphorus membranes.
    Zhang Z; Zhang P; Yang S; Zhang T; Löffler M; Shi H; Lohe MR; Feng X
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13959-13966. PubMed ID: 32513735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation.
    Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G
    J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-Dimensional Ti
    Gao H; Chen W; Xu C; Liu S; Tong X; Chen Y
    Environ Sci Technol; 2020 Mar; 54(5):2931-2940. PubMed ID: 32048835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.
    Zhao Y; Wang J; Kong XY; Xin W; Zhou T; Qian Y; Yang L; Pang J; Jiang L; Wen L
    Natl Sci Rev; 2020 Aug; 7(8):1349-1359. PubMed ID: 34692163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting.
    Zhang X; Huang H; Chen S; Xu Y; Xu F
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128984. PubMed ID: 38151089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges.
    Liu X; Li X; Chu X; Zhang B; Zhang J; Hambsch M; Mannsfeld SCB; Borrelli M; Löffler M; Pohl D; Liu Y; Zhang Z; Feng X
    Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes.
    Lin Z; Meng Z; Miao H; Wu R; Qiu W; Lin N; Liu XY
    ACS Nano; 2021 Mar; 15(3):5649-5660. PubMed ID: 33660992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion.
    Chen J; Xin W; Chen W; Zhao X; Qian Y; Kong XY; Jiang L; Wen L
    ACS Cent Sci; 2021 Sep; 7(9):1486-1492. PubMed ID: 34584949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion.
    Luo Q; Liu P; Fu L; Hu Y; Yang L; Wu W; Kong XY; Jiang L; Wen L
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13223-13230. PubMed ID: 35262329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.
    Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X
    Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrathin H-MXM as An "Ion Freeway" for High-Performance Osmotic Energy Conversion.
    Dong Q; Liu J; Wang Y; He J; Zhai J; Fan X
    Small Methods; 2024 Feb; ():e2301558. PubMed ID: 38308417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.
    Zhang Z; Sui X; Li P; Xie G; Kong XY; Xiao K; Gao L; Wen L; Jiang L
    J Am Chem Soc; 2017 Jul; 139(26):8905-8914. PubMed ID: 28602079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Janus carbon nitride membrane for robust and enhanced nanofluidic power generation from wastewater.
    Zhang L; Pan S; Liu Y; Yu L; Huang T; Xia J; Liu X; Gao J; Sui K; Jiang L
    Water Res; 2023 Aug; 242():120285. PubMed ID: 37413750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.