These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32687702)
41. Building a flexible and applicable sodium ion full battery based on self-supporting large-scale CNT films intertwined with ultra-long cycling NiCo Li T; Xia Y; Wu H; Zhang D; Xu F Nanoscale; 2022 Jul; 14(28):10226-10235. PubMed ID: 35797722 [TBL] [Abstract][Full Text] [Related]
42. Iron Phosphate Coated Flexible Carbon Nanotube Fabric as a Multifunctional Cathode for Na-Ion Batteries. Ren X; Turcheniuk K; Lewis D; Fu W; Magasinski A; Schauer MW; Yushin G Small; 2018 Oct; 14(43):e1703425. PubMed ID: 29498215 [TBL] [Abstract][Full Text] [Related]
43. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Shi Y; Zhou X; Yu G Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258 [TBL] [Abstract][Full Text] [Related]
44. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Kammoun M; Berg S; Ardebili H Nanoscale; 2015 Nov; 7(41):17516-22. PubMed ID: 26444436 [TBL] [Abstract][Full Text] [Related]
45. A Self-Healing Flexible Quasi-Solid Zinc-Ion Battery Using All-In-One Electrodes. Liu J; Long J; Shen Z; Jin X; Han T; Si T; Zhang H Adv Sci (Weinh); 2021 Apr; 8(8):2004689. PubMed ID: 33898202 [TBL] [Abstract][Full Text] [Related]
46. All-Cellulose-based flexible Zinc-Ion battery enabled by waste pomelo peel. Liu Y; Wu Y; Zhou X; Mo Y; Zheng Y; Yuan G; Yang M J Colloid Interface Sci; 2025 Jan; 678(Pt B):497-505. PubMed ID: 39260298 [TBL] [Abstract][Full Text] [Related]
47. All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries. He B; Man P; Zhang Q; Fu H; Zhou Z; Li C; Li Q; Wei L; Yao Y Nanomicro Lett; 2019 Nov; 11(1):101. PubMed ID: 34138024 [TBL] [Abstract][Full Text] [Related]
48. In Situ CVD Derived Co-N-C Composite as Highly Efficient Cathode for Flexible Li-O Yang ZD; Yang XY; Liu T; Chang ZW; Yin YB; Zhang XB; Yan JM; Jiang Q Small; 2018 Oct; 14(43):e1800590. PubMed ID: 30047210 [TBL] [Abstract][Full Text] [Related]
49. A Water-/Fireproof Flexible Lithium-Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator. Yin YB; Yang XY; Chang ZW; Zhu YH; Liu T; Yan JM; Jiang Q Adv Mater; 2018 Jan; 30(1):. PubMed ID: 29178201 [TBL] [Abstract][Full Text] [Related]
50. CNT-Intertwined Polymer Electrode toward the Practical Application of Wearable Devices. Liu N; Liu Y; Zhao Y; Liu Y; Lan Q; Qin J; Song Z; Zhan H ACS Appl Mater Interfaces; 2019 Dec; 11(50):46726-46734. PubMed ID: 31741371 [TBL] [Abstract][Full Text] [Related]
51. Exceptional performance of TiNb₂O₇ anode in all one-dimensional architecture by electrospinning. Jayaraman S; Aravindan V; Suresh Kumar P; Chui Ling W; Ramakrishna S; Madhavi S ACS Appl Mater Interfaces; 2014 Jun; 6(11):8660-6. PubMed ID: 24766070 [TBL] [Abstract][Full Text] [Related]
52. Effect of Solvents on a Li Wang X; Ye L; Nan CW; Li X ACS Appl Mater Interfaces; 2022 Oct; 14(41):46627-46634. PubMed ID: 36197083 [TBL] [Abstract][Full Text] [Related]
53. Metal-Organic-Framework-Based Gel Polymer Electrolyte with Immobilized Anions To Stabilize a Lithium Anode for a Quasi-Solid-State Lithium-Sulfur Battery. Han DD; Wang ZY; Pan GL; Gao XP ACS Appl Mater Interfaces; 2019 May; 11(20):18427-18435. PubMed ID: 31063353 [TBL] [Abstract][Full Text] [Related]
54. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery. Wang Y; Zeng J; Cui X; Zhang L; Zheng G Small; 2016 Feb; 12(8):1091-7. PubMed ID: 26725040 [TBL] [Abstract][Full Text] [Related]
55. Protective Oxide Coating for Ionic Conductive Solid Electrolyte Interphase. Kim YS; Kim SH; Kim G; Heo S; Mun J; Han S; Jung H; Kyoung YK; Yun DJ; Baek WJ; Doo S ACS Appl Mater Interfaces; 2016 Nov; 8(45):30980-30984. PubMed ID: 27787978 [TBL] [Abstract][Full Text] [Related]
56. Flexible Aqueous Li-Ion Battery with High Energy and Power Densities. Yang C; Ji X; Fan X; Gao T; Suo L; Wang F; Sun W; Chen J; Chen L; Han F; Miao L; Xu K; Gerasopoulos K; Wang C Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29034519 [TBL] [Abstract][Full Text] [Related]
57. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. Guo Q; Han Y; Wang H; Xiong S; Li Y; Liu S; Xie K ACS Appl Mater Interfaces; 2017 Dec; 9(48):41837-41844. PubMed ID: 29131566 [TBL] [Abstract][Full Text] [Related]
58. High-performance cellulose nanofibers, single-walled carbon nanotubes and ionic liquid actuators with a poly(vinylidene fluoride- Terasawa N; Asaka K RSC Adv; 2019 Mar; 9(15):8215-8221. PubMed ID: 35518686 [TBL] [Abstract][Full Text] [Related]
59. Aqueous Rechargeable Li Zhang X; Dong M; Xiong Y; Hou Z; Ao H; Liu M; Zhu Y; Qian Y Small; 2020 Oct; 16(41):e2003585. PubMed ID: 32964658 [TBL] [Abstract][Full Text] [Related]
60. Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Barbosa JC; Dias JP; Lanceros-Méndez S; Costa CM Membranes (Basel); 2018 Jul; 8(3):. PubMed ID: 30029489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]