These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 32687816)
1. The dielectric spectroscopy of human red blood cells during 37-day storage: β-dispersion parameterization. David M; Levy E; Barshtein G; Livshits L; Arbell D; Ben Ishai P; Feldman Y Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183410. PubMed ID: 32687816 [TBL] [Abstract][Full Text] [Related]
2. The dielectric spectroscopy of human red blood cells: the differentiation of old from fresh cells. David M; Levy E; Feldman Y; Ben Ishai P; Zelig O; Yedgar S; Barshtein G Physiol Meas; 2017 Jun; 38(7):1335-1348. PubMed ID: 28462905 [TBL] [Abstract][Full Text] [Related]
3. Dielectric Response of Cytoplasmic Water and Its Connection to the Vitality of Human Red Blood Cells. II. The Influence of Storage. Levy E; David M; Barshtein G; Yedgar S; Livshits L; Ben Ishai P; Feldman Y J Phys Chem B; 2017 May; 121(20):5273-5278. PubMed ID: 28453275 [TBL] [Abstract][Full Text] [Related]
4. Effect of blood bank storage on the rheological properties of male and female donor red blood cells. Daly A; Raval JS; Waters JH; Yazer MH; Kameneva MV Clin Hemorheol Microcirc; 2014; 56(4):337-45. PubMed ID: 23818106 [TBL] [Abstract][Full Text] [Related]
5. The inhibition of glucose uptake to erythrocytes: microwave dielectric response. Galindo C; Latypova L; Barshtein G; Livshits L; Arbell D; Einav S; Feldman Y Eur Biophys J; 2022 Jul; 51(4-5):353-363. PubMed ID: 35532810 [TBL] [Abstract][Full Text] [Related]
6. Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters. Bizjak DA; Jungen P; Bloch W; Grau M Cryobiology; 2018 Oct; 84():59-68. PubMed ID: 30080995 [TBL] [Abstract][Full Text] [Related]
7. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion. d'Almeida MS; Jagger J; Duggan M; White M; Ellis C; Chin-Yee IH Transfus Med; 2000 Dec; 10(4):291-303. PubMed ID: 11123813 [TBL] [Abstract][Full Text] [Related]
8. Temporal variation of dielectric properties of preserved blood. Hayashi Y; Oshige I; Katsumoto Y; Omori S; Yasuda A; Asami K Phys Med Biol; 2008 Jan; 53(1):295-304. PubMed ID: 18182704 [TBL] [Abstract][Full Text] [Related]
9. A single assay for multiple storage-sensitive red blood cell characteristics by means of infrared spectroscopy. Pistorius AM; Luten M; Bosman GJ; deGrip WJ Transfusion; 2010 Feb; 50(2):366-75. PubMed ID: 19804571 [TBL] [Abstract][Full Text] [Related]
10. Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method. Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N Biorheology; 1999; 36(5-6):411-23. PubMed ID: 10818639 [TBL] [Abstract][Full Text] [Related]
11. Influence of storage on red blood cell rheological properties. Berezina TL; Zaets SB; Morgan C; Spillert CR; Kamiyama M; Spolarics Z; Deitch EA; Machiedo GW J Surg Res; 2002 Jan; 102(1):6-12. PubMed ID: 11792145 [TBL] [Abstract][Full Text] [Related]
12. Time domain dielectric spectroscopy of nanosecond pulsed electric field induced changes in dielectric properties of pig whole blood. Zhuang J; Kolb JF Bioelectrochemistry; 2015 Jun; 103():28-33. PubMed ID: 25246350 [TBL] [Abstract][Full Text] [Related]
13. Dielectric Response of Cytoplasmic Water and Its Connection to the Vitality of Human Red Blood Cells: I. Glucose Concentration Influence. Levy E; Barshtein G; Livshits L; Ishai PB; Feldman Y J Phys Chem B; 2016 Oct; 120(39):10214-10220. PubMed ID: 27618444 [TBL] [Abstract][Full Text] [Related]
14. Shear stress-induced improvement of red blood cell deformability. Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281 [TBL] [Abstract][Full Text] [Related]
15. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Gimsa J; Müller T; Schnelle T; Fuhr G Biophys J; 1996 Jul; 71(1):495-506. PubMed ID: 8804632 [TBL] [Abstract][Full Text] [Related]
17. Dielectric spectroscopy of red blood cells in sickle cell disease. Liu J; Qiang Y; Du E Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275 [TBL] [Abstract][Full Text] [Related]
18. Red blood cell membrane water permeability increases with length of ex vivo storage. Alshalani A; Acker JP Cryobiology; 2017 Jun; 76():51-58. PubMed ID: 28456565 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation. Vallion R; Bonnefoy F; Daoui A; Vieille L; Tiberghien P; Saas P; Perruche S Transfusion; 2015 Jul; 55(7):1721-35. PubMed ID: 25807899 [TBL] [Abstract][Full Text] [Related]
20. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Anniss AM; Sparrow RL Transfusion; 2006 Sep; 46(9):1561-7. PubMed ID: 16965584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]