BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 32687985)

  • 1. Adversarial active learning for the identification of medical concepts and annotation inconsistency.
    Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L
    J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training.
    Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J
    J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and effective biomedical named entity recognition using temporal convolutional network with conditional random field.
    Sun GX; Zhou CJ; Zhao HY; Jin B; Gao Z
    Math Biosci Eng; 2020 May; 17(4):3553-3566. PubMed ID: 32987543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition.
    Xu K; Yang Z; Kang P; Wang Q; Liu W
    Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.
    Batbaatar E; Ryu KH
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of active learning methods for named entity recognition in clinical text.
    Chen Y; Lasko TA; Mei Q; Denny JC; Xu H
    J Biomed Inform; 2015 Dec; 58():11-18. PubMed ID: 26385377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An imConvNet-based deep learning model for Chinese medical named entity recognition.
    Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction.
    Liu F; Liu M; Li M; Xin Y; Gao D; Wu J; Zhu J
    Quant Imaging Med Surg; 2023 Jun; 13(6):3873-3890. PubMed ID: 37284084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT.
    Chen P; Zhang M; Yu X; Li S
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on named entity recognition of Traditional Chinese Medicine chest discomfort cases incorporating domain vocabulary features.
    Liu Q; Zhang L; Ren G; Zou B
    Comput Biol Med; 2023 Nov; 166():107466. PubMed ID: 37742417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of clinical named entity recognition methods for Serbian electronic health records.
    Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A
    Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LMGAN: Linguistically Informed Semi-Supervised GAN with Multiple Generators.
    Cho W; Choi Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model.
    Wu H; Ji J; Tian H; Chen Y; Ge W; Zhang H; Yu F; Zou J; Nakamura M; Liao J
    JMIR Med Inform; 2021 Dec; 9(12):e26407. PubMed ID: 34855616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DTranNER: biomedical named entity recognition with deep learning-based label-label transition model.
    Hong SK; Lee JG
    BMC Bioinformatics; 2020 Feb; 21(1):53. PubMed ID: 32046638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study.
    Sun Y; Gao D; Shen X; Li M; Nan J; Zhang W
    JMIR Med Inform; 2022 Apr; 10(4):e35606. PubMed ID: 35451969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.