These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32687999)

  • 1. Environmental and economic optima of solar home systems design: A combined LCA and LCC approach.
    Rossi F; Heleno M; Basosi R; Sinicropi A
    Sci Total Environ; 2020 Nov; 744():140569. PubMed ID: 32687999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems.
    Ren M; Mitchell CR; Mo W
    Sci Total Environ; 2020 Jun; 722():137932. PubMed ID: 32208273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental analysis of a nano-grid: A Life Cycle Assessment.
    Rossi F; Parisi ML; Maranghi S; Basosi R; Sinicropi A
    Sci Total Environ; 2020 Jan; 700():134814. PubMed ID: 31693959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-life battery systems for affordable energy access in Kenyan primary schools.
    Kebir N; Leonard A; Downey M; Jones B; Rabie K; Bhagavathy SM; Hirmer SA
    Sci Rep; 2023 Jan; 13(1):1374. PubMed ID: 36697469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications: System Configuration and Viability.
    Bagalini V; Zhao BY; Wang RZ; Desideri U
    Research (Wash D C); 2019; 2019():3838603. PubMed ID: 31922133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techno-Economic Comparison of Stationary Storage and Battery-Electric Buses for Mitigating Solar Intermittency.
    Ahmed A; Massier T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries.
    Üçtuğ FG; Azapagic A
    Sci Total Environ; 2018 Dec; 643():1579-1589. PubMed ID: 30189574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the optimal solar photovoltaic (PV) system for Sudan.
    Fadlallah SO; Benhadji Serradj DE
    Sol Energy; 2020 Sep; 208():800-813. PubMed ID: 32863443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran.
    Farangi M; Asl Soleimani E; Zahedifar M; Amiri O; Poursafar J
    Energy (Oxf); 2020 Jul; 202():117771. PubMed ID: 32367905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.
    Zhai P; Williams ED
    Environ Sci Technol; 2010 Oct; 44(20):7950-5. PubMed ID: 20860380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle cost analysis of solar energy via environmental externality monetization.
    Huang B; Wang Y; Huang Y; Xu X; Chen X; Duan L; Yu G; Li Z; Liu H; Kua HW; Xue B
    Sci Total Environ; 2023 Jan; 856(Pt 1):158910. PubMed ID: 36152852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-criteria decision support system of the photovoltaic and solar thermal energy systems using the multi-objective optimization algorithm.
    Kim J; Hong T; Jeong J; Koo C; Jeong K; Lee M
    Sci Total Environ; 2019 Apr; 659():1100-1114. PubMed ID: 31096325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal sizing of residential photovoltaic and battery system connected to the power grid based on the cost of energy and peak load.
    Vahabi Khah M; Zahedi R; Eskandarpanah R; Mirzaei AM; Farahani ON; Malek I; Rezaei N
    Heliyon; 2023 Mar; 9(3):e14414. PubMed ID: 36950616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.
    Mohamed AF; Elarini MM; Othman AM
    J Adv Res; 2014 May; 5(3):397-408. PubMed ID: 25685507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.
    De Feo G; Forni M; Petito F; Renno C
    Environ Technol; 2016 Oct; 37(19):2473-82. PubMed ID: 26935857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle costing of waste management systems: overview, calculation principles and case studies.
    Martinez-Sanchez V; Kromann MA; Astrup TF
    Waste Manag; 2015 Feb; 36():343-55. PubMed ID: 25524749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined solar power and storage as cost-competitive and grid-compatible supply for China's future carbon-neutral electricity system.
    Lu X; Chen S; Nielsen CP; Zhang C; Li J; Xu H; Wu Y; Wang S; Song F; Wei C; He K; McElroy MB; Hao J
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined assessment of the energy, economic and environmental performance of a photovoltaic system in the Italian context.
    Paiano A; Lagioia G; Ingrao C
    Sci Total Environ; 2023 Mar; 866():161329. PubMed ID: 36603617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method.
    Rashedi A; Khanam T
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29075-29090. PubMed ID: 32424748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Malaysia's Large-Scale Solar Projects: Power System Analysis for Solar PV Grid Integration.
    Khan R; Go Y
    Glob Chall; 2020 Feb; 4(2):1900060. PubMed ID: 32042443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.