These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32688480)

  • 1. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution.
    Fan Z; Dong M
    Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.
    Han L; Yuan J; Dong M; Fan Z
    Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation.
    Dong M; Fan Z; Yu C
    Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density.
    Yu CX; Xue C; Liu J; Hu XY; Liu YY; Ye WH; Wang LF; Wu JF; Fan ZF
    Phys Rev E; 2018 Jan; 97(1-1):013102. PubMed ID: 29448344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers.
    Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H
    Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations.
    Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers.
    Liu W; Wang X; Liu X; Yu C; Fang M; Ye W
    Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape.
    Huang Z; De Luca A; Atherton TJ; Bird M; Rosenblatt C; Carlès P
    Phys Rev Lett; 2007 Nov; 99(20):204502. PubMed ID: 18233146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes.
    Ikegawa T; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension.
    Garnier J; Cherfils-Clérouin C; Holstein PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions.
    Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A
    Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical computation of the Rayleigh-Taylor instability for a viscous fluid with regularized interface properties.
    González-Gutiérrez LM; de Andrea González A
    Phys Rev E; 2019 Jul; 100(1-1):013101. PubMed ID: 31499828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Rayleigh-Taylor instability under interface discontinuous acceleration induced by radiation.
    Hu ZX; Zhang YS; Tian BL
    Phys Rev E; 2020 Apr; 101(4-1):043115. PubMed ID: 32422729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations.
    Zhou ZR; Zhang YS; Tian BL
    Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid.
    White J; Oakley J; Anderson M; Bonazza R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026303. PubMed ID: 20365647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Inclined Interface Angle on Compressible Rayleigh-Taylor Instability: A Numerical Study Based on the Discrete Boltzmann Method.
    Chen B; Lai H; Lin C; Li D
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.