These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Calculating work in weakly driven quantum master equations: Backward and forward equations. Liu F Phys Rev E; 2016 Jan; 93(1):012127. PubMed ID: 26871044 [TBL] [Abstract][Full Text] [Related]
4. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487 [TBL] [Abstract][Full Text] [Related]
5. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
6. Unified approach to stochastic thermodynamics: Application to a quantum heat engine. Das J; Biswas LRR; Bag BC Phys Rev E; 2020 Oct; 102(4-1):042138. PubMed ID: 33212624 [TBL] [Abstract][Full Text] [Related]
7. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Park JM; Chun HM; Noh JD Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096 [TBL] [Abstract][Full Text] [Related]
8. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. Guo J; Wang J; Wang Y; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309 [TBL] [Abstract][Full Text] [Related]
9. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related]
10. Quantum and classical fluctuation theorems from a decoherent histories, open-system analysis. Subaşı Y; Hu BL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011112. PubMed ID: 22400517 [TBL] [Abstract][Full Text] [Related]
11. Optimal performance of periodically driven, stochastic heat engines under limited control. Bauer M; Brandner K; Seifert U Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. Yamamoto K; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226 [TBL] [Abstract][Full Text] [Related]
14. Survival and extreme statistics of work, heat, and entropy production in steady-state heat engines. Manzano G; Roldán É Phys Rev E; 2022 Feb; 105(2-1):024112. PubMed ID: 35291142 [TBL] [Abstract][Full Text] [Related]
15. Space-fractional quantum heat engine based on level degeneracy. Aydiner E Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180 [TBL] [Abstract][Full Text] [Related]
16. Test of fluctuation theorems in non-Markovian open quantum systems. Kawamoto T; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031116. PubMed ID: 22060337 [TBL] [Abstract][Full Text] [Related]
17. Extended heat-fluctuation theorems for a system with deterministic and stochastic forces. van Zon R; Cohen EG Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056121. PubMed ID: 15244897 [TBL] [Abstract][Full Text] [Related]
18. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
19. Quantum dynamical framework for Brownian heat engines. Agarwal GS; Chaturvedi S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437 [TBL] [Abstract][Full Text] [Related]
20. Stochastic Entropy Production: Fluctuation Relation and Irreversibility Mitigation in Non-unital Quantum Dynamics. Fiorelli E; Gherardini S; Marcantoni S J Stat Phys; 2023; 190(6):111. PubMed ID: 37323124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]