These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32688588)

  • 1. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.
    Brister BN; Belykh VN; Belykh IV
    Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistability of patterns of synchrony in Kuramoto oscillators with inertia.
    Belykh IV; Brister BN; Belykh VN
    Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos in networks of coupled oscillators with multimodal natural frequency distributions.
    Smith LD; Gottwald GA
    Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimera states in coupled Kuramoto oscillators with inertia.
    Olmi S
    Chaos; 2015 Dec; 25(12):123125. PubMed ID: 26723164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos in Kuramoto oscillator networks.
    Bick C; Panaggio MJ; Martens EA
    Chaos; 2018 Jul; 28(7):071102. PubMed ID: 30070510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic chimera attractors in a triangular network of identical oscillators.
    Lee S; Krischer K
    Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.
    Chen B; Engelbrecht JR; Mirollo R
    Phys Rev E; 2017 Feb; 95(2-1):022207. PubMed ID: 28297946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solitary states for coupled oscillators with inertia.
    Jaros P; Brezetsky S; Levchenko R; Dudkowski D; Kapitaniak T; Maistrenko Y
    Chaos; 2018 Jan; 28(1):011103. PubMed ID: 29390619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeras and solitary states in 3D oscillator networks with inertia.
    Maistrenko V; Sudakov O; Osiv O
    Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
    Xu K; Maidana JP; Castro S; Orio P
    Sci Rep; 2018 May; 8(1):8370. PubMed ID: 29849108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators.
    Burylko O; Martens EA; Bick C
    Chaos; 2022 Sep; 32(9):093109. PubMed ID: 36182374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase chaos in coupled oscillators.
    Popovych OV; Maistrenko YL; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065201. PubMed ID: 16089804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and control of power grids with diluted network topology.
    Tumash L; Olmi S; Schöll E
    Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling.
    Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I
    Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency assortativity can induce chaos in oscillator networks.
    Skardal PS; Restrepo JG; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Existence and Stability Criteria for Global Synchrony and for Synchrony in two Alternating Clusters of Pulse-Coupled Oscillators Updated to Include Conduction Delays.
    Vedururu Srinivas A; Canavier CC
    bioRxiv; 2024 Aug; ():. PubMed ID: 38260324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blinking chimeras in globally coupled rotators.
    Goldschmidt RJ; Pikovsky A; Politi A
    Chaos; 2019 Jul; 29(7):071101. PubMed ID: 31370417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.