These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32688588)
21. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
22. Synchronized clusters in globally connected networks of second-order oscillators: Uncovering the role of inertia. Gao J; Efstathiou K Chaos; 2021 Sep; 31(9):093137. PubMed ID: 34598453 [TBL] [Abstract][Full Text] [Related]
23. Driven synchronization in random networks of oscillators. Hindes J; Myers CR Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970 [TBL] [Abstract][Full Text] [Related]
24. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators. Aktay S; Sander LM; Zochowski M bioRxiv; 2024 Feb; ():. PubMed ID: 38464134 [TBL] [Abstract][Full Text] [Related]
25. Hysteretic transitions in the Kuramoto model with inertia. Olmi S; Navas A; Boccaletti S; Torcini A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565 [TBL] [Abstract][Full Text] [Related]
26. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033 [TBL] [Abstract][Full Text] [Related]
27. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states. Ku WL; Girvan M; Ott E Chaos; 2015 Dec; 25(12):123122. PubMed ID: 26723161 [TBL] [Abstract][Full Text] [Related]
28. Chimeras and clusters in networks of hyperbolic chaotic oscillators. Cano AV; Cosenza MG Phys Rev E; 2017 Mar; 95(3-1):030202. PubMed ID: 28415379 [TBL] [Abstract][Full Text] [Related]
29. Plasticity and learning in a network of coupled phase oscillators. Seliger P; Young SC; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872 [TBL] [Abstract][Full Text] [Related]
30. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
31. Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators. Cestnik R; Pikovsky A Phys Rev Lett; 2022 Feb; 128(5):054101. PubMed ID: 35179937 [TBL] [Abstract][Full Text] [Related]
32. Transient circulant clusters in two-population network of Kuramoto oscillators with different rules of coupling adaptation. Kasatkin DV; Nekorkin VI Chaos; 2021 Jul; 31(7):073112. PubMed ID: 34340335 [TBL] [Abstract][Full Text] [Related]
33. Finite-size effect in Kuramoto oscillators with higher-order interactions. Suman A; Jalan S Chaos; 2024 Oct; 34(10):. PubMed ID: 39393186 [TBL] [Abstract][Full Text] [Related]
34. Between synchrony and turbulence: intricate hierarchies of coexistence patterns. Haugland SW; Tosolini A; Krischer K Nat Commun; 2021 Sep; 12(1):5634. PubMed ID: 34561462 [TBL] [Abstract][Full Text] [Related]
35. Chimeras and complex cluster states in arrays of spin-torque oscillators. Zaks M; Pikovsky A Sci Rep; 2017 Jul; 7(1):4648. PubMed ID: 28680160 [TBL] [Abstract][Full Text] [Related]
36. Partial synchronization in the second-order Kuramoto model: An auxiliary system method. Barabash NV; Belykh VN; Osipov GV; Belykh IV Chaos; 2021 Nov; 31(11):113113. PubMed ID: 34881584 [TBL] [Abstract][Full Text] [Related]
37. Synchronization and decoherence in a self-excited inertia-wheel multiple rigid-body dynamical system. Yakir G; Gottlieb O Chaos; 2023 Dec; 33(12):. PubMed ID: 38048248 [TBL] [Abstract][Full Text] [Related]