BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32688613)

  • 1. Deep learning to discover and predict dynamics on an inertial manifold.
    Linot AJ; Graham MD
    Phys Rev E; 2020 Jun; 101(6-1):062209. PubMed ID: 32688613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning delay coordinate dynamics for chaotic attractors from partial observable data.
    Young CD; Graham MD
    Phys Rev E; 2023 Mar; 107(3-1):034215. PubMed ID: 37073016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations.
    Linot AJ; Graham MD
    Chaos; 2022 Jul; 32(7):073110. PubMed ID: 35907719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning a reduced basis of dynamical systems using an autoencoder.
    Sondak D; Protopapas P
    Phys Rev E; 2021 Sep; 104(3-1):034202. PubMed ID: 34654102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits.
    Ding X; Chaté H; Cvitanović P; Siminos E; Takeuchi KA
    Phys Rev Lett; 2016 Jul; 117(2):024101. PubMed ID: 27447508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds.
    Liu A; Axås J; Haller G
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38531092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of chaotic systems by deep reinforcement learning.
    Bucci MA; Semeraro O; Allauzen A; Wisniewski G; Cordier L; Mathelin L
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190351. PubMed ID: 31824214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear dynamics of a dispersive anisotropic Kuramoto-Sivashinsky equation in two space dimensions.
    Tomlin RJ; Kalogirou A; Papageorgiou DT
    Proc Math Phys Eng Sci; 2018 Mar; 474(2211):20170687. PubMed ID: 29662339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction, forecasting, and stability of chaotic dynamics from partial data.
    Özalp E; Margazoglou G; Magri L
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37671991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto-Sivashinsky equation.
    Shawki K; Papadakis G
    Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200322. PubMed ID: 32922158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.
    Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL
    Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation.
    Kalogirou A; Keaveny EE; Papageorgiou DT
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20140932. PubMed ID: 26345218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global potential, topology, and pattern selection in a noisy stabilized Kuramoto-Sivashinsky equation.
    Chen YC; Shi C; Kosterlitz JM; Zhu X; Ao P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23227-23234. PubMed ID: 32917812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutional deep neural network.
    Du Y; Zaki TA
    Phys Rev E; 2021 Oct; 104(4-2):045303. PubMed ID: 34781432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of an electrostatically modified Kuramoto-Sivashinsky-Korteweg-de Vries equation arising in falling film flows.
    Tseluiko D; Papageorgiou DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016322. PubMed ID: 20866740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.
    Lan Y; Cvitanović P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026208. PubMed ID: 18850922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.