These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32688668)
1. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow. Tilbrook J; Tyerman SD Funct Plant Biol; 2009 Jun; 36(6):541-550. PubMed ID: 32688668 [TBL] [Abstract][Full Text] [Related]
2. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Tilbrook J; Tyerman SD Funct Plant Biol; 2008 May; 35(3):173-184. PubMed ID: 32688771 [TBL] [Abstract][Full Text] [Related]
3. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Scharwies JD; Tyerman SD Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567 [TBL] [Abstract][Full Text] [Related]
4. Functional xylem in the post-veraison grape berry. Bondada BR; Matthews MA; Shackel KA J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748 [TBL] [Abstract][Full Text] [Related]
5. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits. Thomas TR; Matthews MA; Shackel KA Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481 [TBL] [Abstract][Full Text] [Related]
6. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
7. Vascular Connections Into the Grape Berry: The Link of Structural Investment to Seededness. Xiao Z; Chin S; White RG; Gourieroux AM; Pagay V; Tyerman SD; Schmidtke LM; Rogiers SY Front Plant Sci; 2021; 12():662433. PubMed ID: 33936151 [TBL] [Abstract][Full Text] [Related]
8. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Choat B; Gambetta GA; Shackel KA; Matthews MA Plant Physiol; 2009 Nov; 151(3):1677-87. PubMed ID: 19741048 [TBL] [Abstract][Full Text] [Related]
9. Hypoxia in grape berries: the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death. Xiao Z; Rogiers SY; Sadras VO; Tyerman SD J Exp Bot; 2018 Apr; 69(8):2071-2083. PubMed ID: 29415235 [TBL] [Abstract][Full Text] [Related]
10. Discharge of surplus phloem water may be required for normal grape ripening. Zhang Y; Keller M J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510 [TBL] [Abstract][Full Text] [Related]
11. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
12. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537 [TBL] [Abstract][Full Text] [Related]
13. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries. Chatelet DS; Rost TL; Shackel KA; Matthews MA J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931 [TBL] [Abstract][Full Text] [Related]
14. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz. Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266 [TBL] [Abstract][Full Text] [Related]
15. The role of fruit exposure in the late season decline of grape berry mesocarp cell vitality. Clarke SJ; Rogiers SY Plant Physiol Biochem; 2019 Feb; 135():69-76. PubMed ID: 30508706 [TBL] [Abstract][Full Text] [Related]
16. Loss of rachis cell viability is associated with ripening disorders in grapes. Hall GE; Bondada BR; Keller M J Exp Bot; 2011 Jan; 62(3):1145-53. PubMed ID: 21071679 [TBL] [Abstract][Full Text] [Related]
17. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development. Chatelet DS; Rost TL; Matthews MA; Shackel KA J Exp Bot; 2008; 59(8):1997-2007. PubMed ID: 18440930 [TBL] [Abstract][Full Text] [Related]
18. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M; Matthews M; Shackel K J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [TBL] [Abstract][Full Text] [Related]
19. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition. Šuklje K; Zhang X; Antalick G; Clark AC; Deloire A; Schmidtke LM J Agric Food Chem; 2016 Feb; 64(4):870-80. PubMed ID: 26761394 [TBL] [Abstract][Full Text] [Related]
20. Long-term impact of deficit irrigation on the physical quality of berries in 'Crimson Seedless' table grapes. Conesa MR; de la Rosa JM; Artés-Hernández F; Dodd IC; Domingo R; Pérez-Pastor A J Sci Food Agric; 2015 Sep; 95(12):2510-20. PubMed ID: 25367131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]