These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32688890)

  • 21. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.
    Manea A; Leishman MR
    Oecologia; 2015 Feb; 177(2):499-506. PubMed ID: 25388876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.
    Bunce JA
    Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO(2) vent.
    Tognetti R; Minnocci A; Peñuelas J; Raschi A; Jones MB
    J Exp Bot; 2000 Jun; 51(347):1135-46. PubMed ID: 10948241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase.
    Wagner F; Below R; Klerk PD; Dilcher DL; Joosten H; Kürschner WM; Visscher H
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11705-8. PubMed ID: 11607712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought.
    Miranda-Apodaca J; Pérez-López U; Lacuesta M; Mena-Petite A; Muñoz-Rueda A
    Plant Biol (Stuttg); 2015 Mar; 17(2):298-310. PubMed ID: 25296749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant adaptation or acclimation to rising CO
    Watson-Lazowski A; Lin Y; Miglietta F; Edwards RJ; Chapman MA; Taylor G
    Glob Chang Biol; 2016 Nov; 22(11):3760-3773. PubMed ID: 27539677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum.
    Beerling DJ; Woodward FI
    New Phytol; 1993 Nov; 125(3):641-648. PubMed ID: 33874601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature.
    Duan H; O'Grady AP; Duursma RA; Choat B; Huang G; Smith RA; Jiang Y; Tissue DT
    Tree Physiol; 2015 Jul; 35(7):756-70. PubMed ID: 26063706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling.
    Niklaus PA; Alphei J; Kampichler C; Kandeler E; Körner C; Tscherko D; Wohlfender M
    Ecology; 2007 Dec; 88(12):3153-63. PubMed ID: 18229849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal Cyclic Variation in CO
    Bunce J
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32456237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth responses of an alpine grassland to elevated CO
    Schäppi B; Körner C
    Oecologia; 1996 Jan; 105(1):43-52. PubMed ID: 28307121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2.
    Lecain DR; Morgan JA; Mosier AR; Nelson JA
    Ann Bot; 2003 Jul; 92(1):41-52. PubMed ID: 12754182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration.
    Hao GY; Holbrook NM; Zwieniecki MA; Gutschick VP; BassiriRad H
    Tree Physiol; 2018 Jul; 38(7):1041-1052. PubMed ID: 29401304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature.
    Fraser LH; Greenall A; Carlyle C; Turkington R; Friedman CR
    Ann Bot; 2009 Mar; 103(5):769-75. PubMed ID: 19088084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of CO
    Ceulemans R; VAN Praet L; Jiang XN
    New Phytol; 1995 Sep; 131(1):99-107. PubMed ID: 33863170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stomatal conductance of forest species after long-term exposure to elevated CO
    Medlyn BE; Barton CVM; Broadmeadow MSJ; Ceulemans R; De Angelis P; Forstreuter M; Freeman M; Jackson SB; Kellomäki S; Laitat E; Rey A; Roberntz P; Sigurdsson BD; Strassemeyer J; Wang K; Curtis PS; Jarvis PG
    New Phytol; 2001 Feb; 149(2):247-264. PubMed ID: 33874628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing stomatal conductance in response to rising atmospheric CO2.
    Purcell C; Batke SP; Yiotis C; Caballero R; Soh WK; Murray M; McElwain JC
    Ann Bot; 2018 May; 121(6):1137-1149. PubMed ID: 29394303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why is plant-growth response to elevated CO
    McMurtrie RE; Norby RJ; Medlyn BE; Dewar RC; Pepper DA; Reich PB; Barton CVM
    Funct Plant Biol; 2008 Aug; 35(6):521-534. PubMed ID: 32688808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?
    Wheeler RM; Mackowiak CL; Yorio NC; Sager JC
    Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.