BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32688967)

  • 21. Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap.
    Kallarackal J; Orlich G; Schobert C; Komor E
    Planta; 1989 Mar; 177(3):327-35. PubMed ID: 24212425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phloem transport in Ricinus: Concentration gradients between source and sink.
    Milburn JA
    Planta; 1974 Dec; 117(4):303-19. PubMed ID: 24458461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamics of steady state phloem transport with radial leakage of solute.
    Cabrita P; Thorpe M; Huber G
    Front Plant Sci; 2013; 4():531. PubMed ID: 24409189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simplest steady-state Munch-like model of phloem translocation, with source and pathway and sink.
    Pickard WF; Abraham-Shrauner B
    Funct Plant Biol; 2009 Jul; 36(7):629-644. PubMed ID: 32688676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.
    Carpaneto A; Geiger D; Bamberg E; Sauer N; Fromm J; Hedrich R
    J Biol Chem; 2005 Jun; 280(22):21437-43. PubMed ID: 15805107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-sieve element transport of photoassimilates in sink regions.
    Patrick JW; Offler CE
    J Exp Bot; 1996 Aug; 47 Spec No():1165-77. PubMed ID: 21245245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.
    Stanfield RC; Schulte PJ; Randolph KE; Hacke UG
    Plant Cell Environ; 2019 Feb; 42(2):466-479. PubMed ID: 30074610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics.
    Sellier D; Mammeri Y
    Tree Physiol; 2019 Feb; 39(2):300-311. PubMed ID: 30753675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectroscopy reveals high phloem sugar content in leaves of canopy red oak trees.
    Gersony JT; McClelland A; Holbrook NM
    New Phytol; 2021 Oct; 232(1):418-424. PubMed ID: 33991343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.
    Stanfield R; Laur J
    Cells; 2019 Feb; 8(3):. PubMed ID: 30818743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates.
    Knoblauch J; Peters WS; Knoblauch M
    Ann Bot; 2016 Apr; 117(4):599-606. PubMed ID: 26929203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Universality of phloem transport in seed plants.
    Jensen KH; Liesche J; Bohr T; Schulz A
    Plant Cell Environ; 2012 Jun; 35(6):1065-76. PubMed ID: 22150791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of turgor pressure and its gradient in the Phloem of oak.
    Hammel HT
    Plant Physiol; 1968 Jul; 43(7):1042-8. PubMed ID: 16656880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.
    Froelich DR; Mullendore DL; Jensen KH; Ross-Elliott TJ; Anstead JA; Thompson GA; Pélissier HC; Knoblauch M
    Plant Cell; 2011 Dec; 23(12):4428-45. PubMed ID: 22198148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Source-sink coupling in young barley plants and control of phloem loading.
    Minchin PE; Thorpe MR; Farrar JF; Koroleva OA
    J Exp Bot; 2002 Jul; 53(374):1671-6. PubMed ID: 12096106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sucrose Concentration Gradients along the Post-Phloem Transport Pathway in the Maternal Tissues of Developing Wheat Grains.
    Fisher DB; Wang N
    Plant Physiol; 1995 Oct; 109(2):587-592. PubMed ID: 12228615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.
    Scartazza A; Moscatello S; Matteucci G; Battistelli A; Brugnoli E
    Tree Physiol; 2015 Aug; 35(8):829-39. PubMed ID: 26093372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phloem turgor and the regulation of sucrose loading in Ricinus communis L.
    Smith JA; Milburn JA
    Planta; 1980 Feb; 148(1):42-8. PubMed ID: 24311264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phloem transport in gymnosperms: a question of pressure and resistance.
    Liesche J; Schulz A
    Curr Opin Plant Biol; 2018 Jun; 43():36-42. PubMed ID: 29304388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Proposed Drought Response Equation Added to the Münch-Horwitz Theory of Phloem Transport.
    Goeschl JD; Han L
    Front Plant Sci; 2020; 11():505153. PubMed ID: 33250905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.