These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32689082)

  • 1. Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils.
    Miller CR; Ochoa I; Nielsen KL; Beck D; Lynch JP
    Funct Plant Biol; 2003 Oct; 30(9):973-985. PubMed ID: 32689082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris).
    Miguel MA; Widrig A; Vieira RF; Brown KM; Lynch JP
    Ann Bot; 2013 Oct; 112(6):973-82. PubMed ID: 23925972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phosphorus availability on basal root shallowness in common bean.
    Liao H; Rubio G; Yan X; Cao A; Brown KM; Lynch JP
    Plant Soil; 2001 May; 232(1-2):69-79. PubMed ID: 11729851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings.
    Zhu J; Lynch JP
    Funct Plant Biol; 2004 Nov; 31(10):949-958. PubMed ID: 32688963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays).
    Zhu J; Kaeppler SM; Lynch JP
    Funct Plant Biol; 2005 Sep; 32(8):749-762. PubMed ID: 32689172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.
    Miguel MA; Postma JA; Lynch JP
    Plant Physiol; 2015 Apr; 167(4):1430-9. PubMed ID: 25699587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes.
    Nielsen KL; Eshel A; Lynch JP
    J Exp Bot; 2001 Feb; 52(355):329-39. PubMed ID: 11283178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris.
    Bonser AM; Lynch J; Snapp S
    New Phytol; 1996 Feb; 132(2):281-8. PubMed ID: 11541132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean.
    Rangarajan H; Postma JA; Lynch JP
    Ann Bot; 2018 Aug; 122(3):485-499. PubMed ID: 29982363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.
    Parra-Londono S; Kavka M; Samans B; Snowdon R; Wieckhorst S; Uptmoor R
    Ann Bot; 2018 Feb; 121(2):267-280. PubMed ID: 29351588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model.
    Ge Z; Rubio G; Lynch JP
    Plant Soil; 2000; 218(1-2):159-71. PubMed ID: 11543364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism.
    Basu P; Zhang YJ; Lynch JP; Brown KM
    Funct Plant Biol; 2007 Feb; 34(1):41-51. PubMed ID: 32689330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Crown Root Number Improves Topsoil Foraging and Phosphorus Acquisition.
    Sun B; Gao Y; Lynch JP
    Plant Physiol; 2018 May; 177(1):90-104. PubMed ID: 29618638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia.
    Kim HJ; Lynch JP; Brown KM
    Plant Cell Environ; 2008 Dec; 31(12):1744-55. PubMed ID: 18771572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root architectural tradeoffs for water and phosphorus acquisition.
    Ho MD; Rosas JC; Brown KM; Lynch JP
    Funct Plant Biol; 2005 Sep; 32(8):737-748. PubMed ID: 32689171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus.
    Schwambach J; Fadanelli C; Fett-Neto AG
    Tree Physiol; 2005 Apr; 25(4):487-94. PubMed ID: 15687097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes.
    Vejchasarn P; Lynch JP; Brown KM
    Rice (N Y); 2016 Dec; 9(1):29. PubMed ID: 27294384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development.
    Sorin C; Negroni L; Balliau T; Corti H; Jacquemot MP; Davanture M; Sandberg G; Zivy M; Bellini C
    Plant Physiol; 2006 Jan; 140(1):349-64. PubMed ID: 16377752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.
    Strock CF; Morrow de la Riva L; Lynch JP
    Plant Physiol; 2018 Jan; 176(1):691-703. PubMed ID: 29118249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress].
    Chen HY; Yu HY; Chen GD; Li TX
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3020-6. PubMed ID: 26995909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.