These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32689125)
1. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Carillo P; Mastrolonardo G; Nacca F; Fuggi A Funct Plant Biol; 2005 May; 32(3):209-219. PubMed ID: 32689125 [TBL] [Abstract][Full Text] [Related]
2. Growth and nitrogen metabolism in Sophora japonica (L.) as affected by salinity under different nitrogen forms. Tian J; Pang Y; Yuan W; Peng J; Zhao Z Plant Sci; 2022 Sep; 322():111347. PubMed ID: 35700842 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Carillo P; Mastrolonardo G; Nacca F; Parisi D; Verlotta A; Fuggi A Funct Plant Biol; 2008 Jul; 35(5):412-426. PubMed ID: 32688798 [TBL] [Abstract][Full Text] [Related]
4. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. Annunziata MG; Ciarmiello LF; Woodrow P; Maximova E; Fuggi A; Carillo P Front Plant Sci; 2016; 7():2035. PubMed ID: 28119716 [TBL] [Abstract][Full Text] [Related]
5. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Sharma P; Dubey RS J Plant Physiol; 2005 Aug; 162(8):854-64. PubMed ID: 16146311 [TBL] [Abstract][Full Text] [Related]
6. Exogenous Putrescine Modulates Nitrate Reductase-Dependent NO Production in Cucumber Seedlings Subjected to Salt Stress. Napieraj N; Janicka M; Augustyniak B; Reda M Metabolites; 2023 Sep; 13(9):. PubMed ID: 37755310 [TBL] [Abstract][Full Text] [Related]
7. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Matt P; Schurr U; Klein D; Krapp A; Stitt M Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717 [TBL] [Abstract][Full Text] [Related]
8. Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Migge A; Bork C; Hell R; Becker TW Planta; 2000 Sep; 211(4):587-95. PubMed ID: 11030559 [TBL] [Abstract][Full Text] [Related]
9. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Woodrow P; Ciarmiello LF; Annunziata MG; Pacifico S; Iannuzzi F; Mirto A; D'Amelia L; Dell'Aversana E; Piccolella S; Fuggi A; Carillo P Physiol Plant; 2017 Mar; 159(3):290-312. PubMed ID: 27653956 [TBL] [Abstract][Full Text] [Related]
10. Effects of NaCI stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Parida AK; Das AB J Plant Physiol; 2004 Aug; 161(8):921-8. PubMed ID: 15384403 [TBL] [Abstract][Full Text] [Related]
11. Effect of nitrogen source on growth response to salinity stress in maize and wheat. Lewis OAM; Leidi EO; Lips SH New Phytol; 1989 Feb; 111(2):155-160. PubMed ID: 33874262 [TBL] [Abstract][Full Text] [Related]
12. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Balotf S; Kavoosi G; Kholdebarin B Biotechnol Appl Biochem; 2016; 63(2):220-9. PubMed ID: 25676153 [TBL] [Abstract][Full Text] [Related]
13. Elevated CO Adavi SB; Sathee L Protoplasma; 2021 Jan; 258(1):219-233. PubMed ID: 33047233 [TBL] [Abstract][Full Text] [Related]
14. The positive effect of salinity on nitrate uptake in Suaeda salsa. Liu R; Cui B; Lu X; Song J Plant Physiol Biochem; 2021 Sep; 166():958-963. PubMed ID: 34256249 [TBL] [Abstract][Full Text] [Related]
15. Elevated pCO(2 )favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. Kruse J; Hetzger I; Hänsch R; Mendel RR; Walch-Liu P; Engels C; Rennenberg H J Exp Bot; 2002 Dec; 53(379):2351-67. PubMed ID: 12432028 [TBL] [Abstract][Full Text] [Related]
16. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels. Zouhaier B; Mariem M; Mokded R; Rouached A; Alsane K; Chedly A; Abderrazek S; Abdallah A J Plant Res; 2016 May; 129(3):423-34. PubMed ID: 26818949 [TBL] [Abstract][Full Text] [Related]
17. Influence of plant age and growth conditions on nitrate assimilation in roots of Lotus japonicus plants. Pajuelo P; Pajuelo E; Orea A; Romero JM; Márquez AJ Funct Plant Biol; 2002 Apr; 29(4):485-494. PubMed ID: 32689493 [TBL] [Abstract][Full Text] [Related]
18. Drought, Salinity, and Low Nitrogen Differentially Affect the Growth and Nitrogen Metabolism of Tian J; Pang Y; Zhao Z Front Plant Sci; 2021; 12():715456. PubMed ID: 34671370 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Farhangi-Abriz S; Torabian S Ecotoxicol Environ Saf; 2017 Mar; 137():64-70. PubMed ID: 27915144 [TBL] [Abstract][Full Text] [Related]
20. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Ehlting B; Dluzniewska P; Dietrich H; Selle A; Teuber M; Hänsch R; Nehls U; Polle A; Schnitzler JP; Rennenberg H; Gessler A Plant Cell Environ; 2007 Jul; 30(7):796-811. PubMed ID: 17547652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]