These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32689405)
1. The effect of elevated CO Pegoraro E; Potosnak MJ; Monson RK; Rey A; Barron-Gafford G; Osmond CB Funct Plant Biol; 2007 Sep; 34(9):774-784. PubMed ID: 32689405 [TBL] [Abstract][Full Text] [Related]
2. The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Pegoraro E; Rey A; Barron-Gafford G; Monson R; Malhi Y; Murthy R Oecologia; 2005 Nov; 146(1):120-9. PubMed ID: 16001217 [TBL] [Abstract][Full Text] [Related]
3. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Monson RK; Harley PC; Litvak ME; Wildermuth M; Guenther AB; Zimmerman PR; Fall R Oecologia; 1994 Sep; 99(3-4):260-270. PubMed ID: 28313880 [TBL] [Abstract][Full Text] [Related]
4. Effect of elevated CO Pegoraro E; Rey A; Bobich EG; Barron-Gafford G; Grieve KA; Malhi Y; Murthy R Funct Plant Biol; 2004 Dec; 31(12):1137-1147. PubMed ID: 32688981 [TBL] [Abstract][Full Text] [Related]
5. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Monson RK; Trahan N; Rosenstiel TN; Veres P; Moore D; Wilkinson M; Norby RJ; Volder A; Tjoelker MG; Briske DD; Karnosky DF; Fall R Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1677-95. PubMed ID: 17513269 [TBL] [Abstract][Full Text] [Related]
6. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
7. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration. Potosnak MJ; Lestourgeon L; Nunez O Sci Total Environ; 2014 May; 481():352-9. PubMed ID: 24614154 [TBL] [Abstract][Full Text] [Related]
8. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Sharkey TD; Loreto F Oecologia; 1993 Sep; 95(3):328-333. PubMed ID: 28314006 [TBL] [Abstract][Full Text] [Related]
9. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Yuan X; Calatayud V; Gao F; Fares S; Paoletti E; Tian Y; Feng Z Plant Cell Environ; 2016 Oct; 39(10):2276-87. PubMed ID: 27411672 [TBL] [Abstract][Full Text] [Related]
10. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit. Engel VC; Griffin KL; Murthy R; Patterson L; Klimas C; Potosnak M Tree Physiol; 2004 Oct; 24(10):1137-45. PubMed ID: 15294760 [TBL] [Abstract][Full Text] [Related]
11. Modelling the effect of the 2018 summer heatwave and drought on isoprene emissions in a UK woodland. Otu-Larbi F; Bolas CG; Ferracci V; Staniaszek Z; Jones RL; Malhi Y; Harris NRP; Wild O; Ashworth K Glob Chang Biol; 2020 Apr; 26(4):2320-2335. PubMed ID: 31837069 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves. Singsaas EL; Laporte MM; Shi JZ; Monson RK; Bowling DR; Johnson K; Lerdau M; Jasentuliytana A; Sharkey TD Tree Physiol; 1999 Dec; 19(14):917-924. PubMed ID: 12651303 [TBL] [Abstract][Full Text] [Related]
14. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Shimono H; Nakamura H; Hasegawa T; Okada M Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676 [TBL] [Abstract][Full Text] [Related]
15. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Rosenstiel TN; Potosnak MJ; Griffin KL; Fall R; Monson RK Nature; 2003 Jan; 421(6920):256-9. PubMed ID: 12529640 [TBL] [Abstract][Full Text] [Related]
16. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Harley P; Guenther A; Zimmerman P Tree Physiol; 1996; 16(1_2):25-32. PubMed ID: 14871744 [TBL] [Abstract][Full Text] [Related]
17. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA). Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459 [TBL] [Abstract][Full Text] [Related]
18. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Norby RJ; Sholtis JD; Gunderson CA; Jawdy SS Oecologia; 2003 Aug; 136(4):574-84. PubMed ID: 12811536 [TBL] [Abstract][Full Text] [Related]
19. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
20. Monoterpene emissions in response to long-term night-time warming, elevated CO Tiiva P; Tang J; Michelsen A; Rinnan R Sci Total Environ; 2017 Feb; 580():1056-1067. PubMed ID: 27989477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]