These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 32689415)

  • 41. Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea.
    Pratap A; Chaturvedi SK; Tomar R; Rajan N; Malviya N; Thudi M; Saabale PR; Prajapati U; Varshney RK; Singh NP
    Mol Genet Genomics; 2017 Dec; 292(6):1237-1245. PubMed ID: 28668975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CNMS: The preferred genic markers for comparative genomic, molecular phylogenetic, functional genetic diversity and differential gene regulatory expression analyses in chickpea.
    Bajaj D; Das S; Parida SK
    J Biosci; 2015 Sep; 40(3):579-92. PubMed ID: 26333404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First Report of Ascochyta Blight of Chickpea in Latin America.
    Kaiser WJ; Coca W F; Vega O S
    Plant Dis; 2000 Jan; 84(1):102. PubMed ID: 30841208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
    Friesen ML; von Wettberg EJ; Badri M; Moriuchi KS; Barhoumi F; Chang PL; Cuellar-Ortiz S; Cordeiro MA; Vu WT; Arraouadi S; Djébali N; Zribi K; Badri Y; Porter SS; Aouani ME; Cook DR; Strauss SY; Nuzhdin SV
    BMC Genomics; 2014 Dec; 15(1):1160. PubMed ID: 25534372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability and suitability of genotypes and environment to Ascochyta blight of chickpea.
    Sharma M; Sharath Chandran US; Rani U; Singh SK; Basandrai AK; Basandrai D
    Front Plant Sci; 2023; 14():1006099. PubMed ID: 37056505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map.
    Tar'an B; Warkentin TD; Tullu A; Vandenberg A
    Genome; 2007 Jan; 50(1):26-34. PubMed ID: 17546068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomics-based precision breeding approaches to improve drought tolerance in rice.
    Swamy BP; Kumar A
    Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L.).
    Meena MK; Ghawana S; Sardar A; Dwivedi V; Khandal H; Roy R; Chattopadhyay D
    PLoS One; 2015; 10(4):e0123640. PubMed ID: 25853855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of sequence tagged microsatellite sites to the chickpea genetic map.
    Tekeoglu M; Rajesh N; Muehlbauer J
    Theor Appl Genet; 2002 Nov; 105(6-7):847-854. PubMed ID: 12582909
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Medicago truncatula Genomics.
    Ané JM; Zhu H; Frugoli J
    Int J Plant Genomics; 2008; 2008():256597. PubMed ID: 18288239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Breeding, Genetics, and Genomics Approaches for Improving Fusarium Wilt Resistance in Major Grain Legumes.
    Jha UC; Bohra A; Pandey S; Parida SK
    Front Genet; 2020; 11():1001. PubMed ID: 33193586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differentiation of an Iranian resistance chickpea line to Ascochyta blight from a susceptible line using a functional SNP.
    Zangene K; Emamjomeh A; Shokouhifar F; Mamarabadi M; Mehdinezhad N
    AMB Express; 2022 Apr; 12(1):45. PubMed ID: 35429254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Next-Generation Combinatorial Genomic Strategy Scans Genomic Loci Governing Heat Stress Tolerance in Chickpea.
    Mohanty JK; Yadav A; Narnoliya L; Thakro V; Nayyar H; Dixit GP; Jha UC; Vara Prasad PV; Agarwal P; Parida SK
    Plant Cell Environ; 2024 Oct; ():. PubMed ID: 39360859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic resources and tools for gene function analysis in potato.
    Bryan GJ; Hein I
    Int J Plant Genomics; 2008; 2008():216513. PubMed ID: 19107214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Editorial: Advances in Ascochyta Research.
    Rubiales D; Fondevilla S; Chen W; Davidson J
    Front Plant Sci; 2018; 9():22. PubMed ID: 29456542
    [No Abstract]   [Full Text] [Related]  

  • 56. Naturally occurring diversity helps to reveal genes of adaptive importance in legumes.
    Gentzbittel L; Andersen SU; Ben C; Rickauer M; Stougaard J; Young ND
    Front Plant Sci; 2015; 6():269. PubMed ID: 25954294
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Italian functional genomic resource for Medicago truncatula.
    Porceddu A; Panara F; Calderini O; Molinari L; Taviani P; Lanfaloni L; Scotti C; Carelli M; Scaramelli L; Bruschi G; Cosson V; Ratet P; de Larembergue H; Duc G; Piano E; Arcioni S
    BMC Res Notes; 2008 Dec; 1():129. PubMed ID: 19077311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Editorial: Abiotic stress: Molecular genetics and genomics, volume II.
    Garg R; Subudhi PK; Varshney RK; Jain M
    Front Plant Sci; 2022; 13():1101139. PubMed ID: 36743575
    [No Abstract]   [Full Text] [Related]  

  • 59. Molecular genetics and genomics of abiotic stress responses.
    Garg R; Varshney RK; Jain M
    Front Plant Sci; 2014; 5():398. PubMed ID: 25191329
    [No Abstract]   [Full Text] [Related]  

  • 60. Correction to: Data sharing and ontology use among agricultural genetics, genomics, and breeding databases and resources of the Agbiodata Consortium.
    Database (Oxford); 2024 Mar; 2024():. PubMed ID: 38554133
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.