These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 32689450)

  • 1. Environmental effects on stunting and the expression of a tiller inhibition (tin) gene in wheat.
    Duggan BL; Richards RA; Tsuyuzaki H
    Funct Plant Biol; 2002 Jan; 29(1):45-53. PubMed ID: 32689450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.
    Moeller C; Evers JB; Rebetzke G
    Front Plant Sci; 2014; 5():617. PubMed ID: 25520724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological perspectives of reduced tillering and stunting in the tiller inhibition (tin) mutant of wheat.
    Kebrom TH; Richards RA
    Funct Plant Biol; 2013 Oct; 40(10):977-985. PubMed ID: 32481166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development.
    Kebrom TH; Chandler PM; Swain SM; King RW; Richards RA; Spielmeyer W
    Plant Physiol; 2012 Sep; 160(1):308-18. PubMed ID: 22791303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments.
    Hendriks PW; Kirkegaard JA; Lilley JM; Gregory PJ; Rebetzke GJ
    J Exp Bot; 2016 Jan; 67(1):327-40. PubMed ID: 26494729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reduced-tillering trait shows small but important yield gains in dryland wheat production.
    Houshmandfar A; Ota N; O'Leary GJ; Zheng B; Chen Y; Tausz-Posch S; Fitzgerald GJ; Richards R; Rebetzke GJ; Tausz M
    Glob Chang Biol; 2020 Jul; 26(7):4056-4067. PubMed ID: 32237246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of reduced-tillering (tin) wheat lines in managed, terminal water deficit environments.
    Mitchell JH; Rebetzke GJ; Chapman SC; Fukai S
    J Exp Bot; 2013 Aug; 64(11):3439-51. PubMed ID: 23873998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cessation of tillering in spring wheat in relation to light interception and red : far-red ratio.
    Evers JB; Vos J; Andrieu B; Struik PC
    Ann Bot; 2006 Apr; 97(4):649-58. PubMed ID: 16464875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition.
    Hyles J; Vautrin S; Pettolino F; MacMillan C; Stachurski Z; Breen J; Berges H; Wicker T; Spielmeyer W
    J Exp Bot; 2017 Mar; 68(7):1519-1529. PubMed ID: 28369427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of tillering in sorghum: genotypic effects.
    Kim HK; Luquet D; van Oosterom E; Dingkuhn M; Hammer G
    Ann Bot; 2010 Jul; 106(1):69-78. PubMed ID: 20430784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WALTer: a three-dimensional wheat model to study competition for light through the prediction of tillering dynamics.
    Lecarpentier C; Barillot R; Blanc E; Abichou M; Goldringer I; Barbillon P; Enjalbert J; Andrieu B
    Ann Bot; 2019 Jun; 123(6):961-975. PubMed ID: 30629113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.
    Dias de Oliveira EA; Siddique KH; Bramley H; Stefanova K; Palta JA
    Glob Chang Biol; 2015 Feb; 21(2):857-73. PubMed ID: 25330325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tillering in grain sorghum over a wide range of population densities: identification of a common hierarchy for tiller emergence, leaf area development and fertility.
    Lafarge TA; Broad J; Hammer GL
    Ann Bot; 2002 Jul; 90(1):87-98. PubMed ID: 12125776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthesis and transpiration of the flag leaf in four spring-wheat cultivars.
    Aslam M; Hunt LA
    Planta; 1978 Jan; 141(1):23-8. PubMed ID: 24414627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated Early Growth of Rice at Elevated CO2 (Is It Related to Developmental Changes in the Shoot Apex?).
    Jitla DS; Rogers GS; Seneweera SP; Basra AS; Oldfield RJ; Conroy JP
    Plant Physiol; 1997 Sep; 115(1):15-22. PubMed ID: 12223789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of tillering in sorghum: environmental effects.
    Kim HK; van Oosterom E; Dingkuhn M; Luquet D; Hammer G
    Ann Bot; 2010 Jul; 106(1):57-67. PubMed ID: 20421230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants.
    Skinner DZ; Bellinger B; Hiscox W; Helms GL
    PLoS One; 2018; 13(6):e0198042. PubMed ID: 29912979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum).
    Evers JB; Vos J; Fournier C; Andrieu B; Chelle M; Struik PC
    New Phytol; 2005 Jun; 166(3):801-12. PubMed ID: 15869643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tillering in grain sorghum over a wiide range of population densities: modelling dynamics of tiller fertility.
    Lafarge TA; Hammer GL
    Ann Bot; 2002 Jul; 90(1):99-110. PubMed ID: 12125777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low red/far-red ratio can induce cytokinin degradation resulting in the inhibition of tillering in wheat (
    Lei K; Tan Q; Zhu L; Xu L; Yang S; Hu J; Gao L; Hou P; Shao Y; Jiang D; Cao W; Dai T; Tian Z
    Front Plant Sci; 2022; 13():971003. PubMed ID: 36570939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.