These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32689477)

  • 1. Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii.
    Morel FMM; Cox EH; Kraepiel AML; Lane TW; Milligan AJ; Schaperdoth I; Reinfelder JR; Tortell PD
    Funct Plant Biol; 2002 Apr; 29(3):301-308. PubMed ID: 32689477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA.
    Del Prete S; Vullo D; De Luca V; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2014 Dec; 29(6):906-11. PubMed ID: 24456295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.
    Reinfelder JR; Milligan AJ; Morel FM
    Plant Physiol; 2004 Aug; 135(4):2106-11. PubMed ID: 15286292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii.
    Alterio V; Langella E; De Simone G; Monti SM
    Mar Drugs; 2015 Mar; 13(4):1688-97. PubMed ID: 25815892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii.
    Alterio V; Langella E; Viparelli F; Vullo D; Ascione G; Dathan NA; Morel FM; Supuran CT; De Simone G; Monti SM
    Biochimie; 2012 May; 94(5):1232-41. PubMed ID: 22381359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, Expression and Characterization of the δ-carbonic Anhydrase of Thalassiosira weissflogii (Bacillariophyceae).
    Lee RB; Smith JA; Rickaby RE
    J Phycol; 2013 Feb; 49(1):170-7. PubMed ID: 27008398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biological function for cadmium in marine diatoms.
    Lane TW; Morel FM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4627-31. PubMed ID: 10781068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii.
    Lane TW; Morel FM
    Plant Physiol; 2000 May; 123(1):345-52. PubMed ID: 10806251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum.
    Iglesias-Rodriguez MD; Merrett MJ
    New Phytol; 1997 Jan; 135(1):163-168. PubMed ID: 33863155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.
    Park H; Song B; Morel FM
    Environ Microbiol; 2007 Feb; 9(2):403-13. PubMed ID: 17222138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.
    Isensee K; Erez J; Stoll HM
    Physiol Plant; 2014 Feb; 150(2):321-38. PubMed ID: 23992373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic carbon acquisition by aquatic photolithoatrophs of the Dighty Burn, Angus, U.K.: uses and limitations of natural abundance measurements of carbon isotopes.
    Raven JA; Johnston AM; Newman JR; Scrimgeour CM
    New Phytol; 1994 Jun; 127(2):271-286. PubMed ID: 33874509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana.
    Kustka AB; Milligan AJ; Zheng H; New AM; Gates C; Bidle KD; Reinfelder JR
    New Phytol; 2014 Nov; 204(3):507-520. PubMed ID: 25046577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii.
    Del Prete S; Vullo D; Scozzafava A; Capasso C; Supuran CT
    Bioorg Med Chem; 2014 Jan; 22(1):531-7. PubMed ID: 24268544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control.
    Roberts K; Granum E; Leegood RC; Raven JA
    Plant Physiol; 2007 Sep; 145(1):230-5. PubMed ID: 17644625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.