These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 32689559)
41. Heat shocks increase the chilling tolerance of rice (Oryza sativa) seedling radicles. Saltveit ME J Agric Food Chem; 2002 May; 50(11):3232-5. PubMed ID: 12009992 [TBL] [Abstract][Full Text] [Related]
42. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Huang B; Chu CH; Chen SL; Juan HF; Chen YM Cell Mol Biol Lett; 2006; 11(2):264-78. PubMed ID: 16847571 [TBL] [Abstract][Full Text] [Related]
43. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Bai XG; Chen JH; Kong XX; Todd CD; Yang YP; Hu XY; Li DZ Free Radic Biol Med; 2012 Aug; 53(4):710-20. PubMed ID: 22683602 [TBL] [Abstract][Full Text] [Related]
44. Role of glutathione in the adaptive tolerance to H2O2. Seo YJ; Lee JW; Lee EH; Lee HK; Kim HW; Kim YH Free Radic Biol Med; 2004 Oct; 37(8):1272-81. PubMed ID: 15451066 [TBL] [Abstract][Full Text] [Related]
45. Genotype-specific differences in chilling tolerance of maize in relation to chilling-induced changes in water status and abscisic acid accumulation. Capell B; Dörffling K Physiol Plant; 1993 Aug; 88(4):638-646. PubMed ID: 28741763 [TBL] [Abstract][Full Text] [Related]
46. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Zhou R; Zhou R; Zhang X; Zhuang J; Yang S; Bazaka K; Ken Ostrikov K Sci Rep; 2016 Sep; 6():32603. PubMed ID: 27584560 [TBL] [Abstract][Full Text] [Related]
47. Effects on photosynthesis and polyphenolic compounds in crop plant mung bean (Vigna radiata) following simulated accidental exposure to hydrogen peroxide. Chae Y; Cui R; Lee J; An YJ J Hazard Mater; 2020 Feb; 383():121088. PubMed ID: 31518806 [TBL] [Abstract][Full Text] [Related]
48. Transcriptional expression of a Solanum sogarandium pGT::Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedlings. Yin Z; Pawłowicz I; Bartoszewski G; Malinowski R; Malepszy S; Rorat T Cell Mol Biol Lett; 2004; 9(4B):891-902. PubMed ID: 15647805 [TBL] [Abstract][Full Text] [Related]
49. Low Temperature-Induced Cytoplasmic Acidosis in Cultured Mung Bean (Vigna radiata [L.] Wilczek) Cells. Yoshida S Plant Physiol; 1994 Apr; 104(4):1131-1138. PubMed ID: 12232153 [TBL] [Abstract][Full Text] [Related]
50. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Xu PL; Guo YK; Bai JG; Shang L; Wang XJ Physiol Plant; 2008 Apr; 132(4):467-78. PubMed ID: 18334000 [TBL] [Abstract][Full Text] [Related]
51. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling. Granhus A; Fløistad IS; Søgaard G Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964 [TBL] [Abstract][Full Text] [Related]
52. Chilling-Induced Inactivation and Its Recovery of Tonoplast H-ATPase in Mung Bean Cell Suspension Cultures. Yoshida S Plant Physiol; 1991 Feb; 95(2):456-60. PubMed ID: 16668005 [TBL] [Abstract][Full Text] [Related]
53. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. Meng X; Zhao Q; Jin Y; Yu J; Yin Z; Chen S; Dai S J Proteomics; 2016 Jun; 143():365-381. PubMed ID: 27130536 [TBL] [Abstract][Full Text] [Related]
54. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Cabané M; Calvet P; Vincens P; Boudet AM Planta; 1993; 190(3):346-53. PubMed ID: 7763662 [TBL] [Abstract][Full Text] [Related]
55. Phase transitions in liposomes formed from the polar lipids of mitochondria from chilling-sensitive plants. Raison JK; Orr GR Plant Physiol; 1986 Jul; 81(3):807-11. PubMed ID: 16664907 [TBL] [Abstract][Full Text] [Related]
56. Light-dependent reversal of dark-chilling induced changes in chloroplast structure and arrangement of chlorophyll-protein complexes in bean thylakoid membranes. Garstka M; Drozak A; Rosiak M; Venema JH; Kierdaszuk B; Simeonova E; van Hasselt PR; Dobrucki J; Mostowska A Biochim Biophys Acta; 2005 Nov; 1710(1):13-23. PubMed ID: 16209864 [TBL] [Abstract][Full Text] [Related]
57. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. O'Kane D; Gill V; Boyd P; Burdon R Planta; 1996; 198(3):371-7. PubMed ID: 8717134 [TBL] [Abstract][Full Text] [Related]
58. Temporal organization of chilling resistance in cotton seedlings: effects of low temperature and relative humidity. Rikin A Planta; 1992 Jul; 187(4):517-22. PubMed ID: 24178147 [TBL] [Abstract][Full Text] [Related]
59. Phase transitions in thylakoid polar lipids of chilling-sensitive plants: a comparison of detection methods. Raison JK; Orr GR Plant Physiol; 1986 Mar; 80(3):638-45. PubMed ID: 16664677 [TBL] [Abstract][Full Text] [Related]
60. Effect of temperature conditioning on chilling injury of cucumber cotyledons: possible role of abscisic Acid and heat shock proteins. Lafuente MT; Belver A; Guye MG; Saltveit ME Plant Physiol; 1991 Feb; 95(2):443-9. PubMed ID: 16668003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]